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7.1 OBJECTIVE

SECTION 7.

INTRODUCTION TO SPACECRAFT DESIGN

The objective of this second phase of the study is to develop spacecraft designs for the

three missions selected in Phase Io In establishing the spacecraft designs, consideration

will be given to the following principal areas.

a. Solar Thermionic Experiment Design

b. Secondary Experiments

c. Telemetry, Tracking and Command Subsystem

d. Attitude Control Subsystem

e. Power Subsystem

f. Spacecraft Structure and Thermal Control

The spacecraft designs will be conceptual in depth and establish the general configuration,

performance and weight of the vehicles.

7.2 SELECTED MISSIONS

The pertinent information on the three missions selected in I_hase I (see Section 6-Volume II)

is summarized in Table 7-1. The missions are listed in order of attractiveness and in

subsequent sections will be referred to as Missions A, B and C.

The conclusions drawn in the Mission Analysis Phase of the study were based on a space-

craft weight of 350 pounds. When the spacecraft designs are formulated, their weights will

be calculated and compared with this figure; the effect of any deviations will be determined.
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In formulating the spacecraft designs, a 1967 to 1969 flight period is assumed. This period

is believed to be in keeping with a reasonable development program for solar thermionics.

The spacecraft are designed for a useful life in space of one year. This value of design

life was selected because in addition to the primary experiment, it is highly desirable to

obtain performance information on many of the secondary experiments over extended periods

of space operation.
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SECTION 8

SOLARTHERMIONICEXPERIMENT DESIGN

8. i INTRODUCTION

This section presents the proposed design for the solar thermionic primary experiment.

The systems calculations establishing the expected performance of the solar thermionic

system were performed in the Mission Analysis phase of the study and are presented in

Section 4. The major results of these calculations are summarized in Table 8-1. These

performance parameters served as the starting point for establishing the solar thermionic

experiment design.

Since the selected missions all employ a version of the IMPROVED DELTA launch vehicle

the allowable payload diameter (57 inches) is identical in all three cases. This allows the

basic solar thermionic system design to be the same for the three missions.

The study ground rules placed two restrictions on the thermionic system: (1) that the

generator contain four thermionic converters, and (2) that the generator power output be

a minimum of 100 watts.

8.2 DESIGN PHILOSOPHY

The thermionic system design is based on present state-of-the-art performance and fabrica-

tion techniques. The emphasis was placed on designing a thermionic system that could be

developed with existing technology and would deliver the estimated performance. Low weight

and extremely high performance were not major design criteria. As a result of this con-

servative approach it is very likely that the estimated system performance and weight could

be improved upon by the time a system is actually developed for this application.
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Table 8-1 Thermionie System Performance Parameters

PERFORMANCEPARAMETERS

Converter Emitter Temperature

Converter Electrode Spacing

Converter Emitter Material

Converter Sleeve Thickness

Converter Emitter Area

Converter Operating Point

Converter Power Density

Converter Voltage Output

Converter Efficiency

Concentrator Diameter

Concentrator Rim Angle

Concentrator Geometric Error, 3 a

Concentrator Reflectivity

Concentrator Blockage Factor

Concentrator-Absorber Efficiency

Thermionic Generator Aperture Diameter

Thermionic Generator Efficiency

Thermionic Generator Power Output

Thermionic Generator Voltage

(Four Converters in Series)

Thermionic System Efficiency

2000°K

2 Mils

Rhenium

0. 0025 Inches a

2
2 em

Peak Efficiency

18 Watts/cm 2

0.85 Volts

17.4 Percent

50 Inches

60 Degrees

12 Minutes

90 Percent

5 Percent

67 Percent

0.71 Inches

12.2 Percent

144 Watts

3.4 Volts

8.2 Percent

Note

a. Inthefinal converter design, shown in Figure 8-2, the use of a re-entrant emitter sleeve

design allows this thickness to be increased to 0.007 inches with no decrease in converter

performance.

8-2



8.3 DESCRIPTION OF COMPONENTS

The solar thermionic system is composed of three major components: (I) solar concentra-

tor, (2) thermionic generator, and (3) generator-concentrator support structure. The basic

design of these three components is described in this section.

8.3.1 SOLAR CONCENTRATOR

Figure 8-1 shows the proposed concentrator design. The concentrator parabolic surface

would be electroformed nickel, 15 mils in thickness. This surface would be bonded near

the outside edge to a torus which would serve as the main structural member. A bonding

material such as RTV-60 (room temperature vulcanizing rubber) would be used. The torus

material would be nickel also to eliminate thermal expansion mismatch between the concen-

trator surface and the torus. The torus would be 2 inches in diameter with a 15-mil wall.

The parabolic surface would be covered with a highly reflective multilayer coating such as

Liberty Mirror Coating No. 747. This is a vapor deposited aluminum coating with an

enhancing vapor deposited undercoat and overcoat*. A four-inch diameter hole would be

provided in the center of the concentrator to aid in reflectance measurements of the concen-

trator surface (see Section 8.6,1), The edge of the concentrator surface would be notched

at three locations (120 degrees apart) to provide attachment points for the generator support

arms.

Nickel was selected for the electroformed surface because most of the existing experience

in electroformed concentrators is with nickel. However, work is being conducted on electro-

forming aluminum (Reference 8-1) and should this work progress to the point where nickel

concentrator performance could be matched with aluminum, then aluminum would definitely

be preferred. The capability to fabricate a high performance stretch-formed aluminum con-

centrator should also be investigated since this offers a potential means of eliminating the

nickel concentrator. Aluminum has two major advantages over nickel for this application:

(1) it would reduce the concentrator weight by approximately two thirds, and (2) it would

*The exact details of the Liberty Mirror coatings are company proprietary.
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Q

eliminate the large disturbance torques resulting from the interaction between the magnetic

nickel concentrator and the earth's magnetic field (see Section 11.3.7).

The concentrator skin thickness could probably be made smaller than 15 mils. Concentrators

in this size range have been built with 8 to 10-mil skins (References 8-1 and 8-2). Calcula-

tions performed in Reference 8-1 indicate that for concentrators of this size a skin thickness

of less than 10 mils is adequate to withstand launch loads. However, a 50-inch diameter

concentrator, with a 10-mil skin, would have to be handled with extreme care. Also, some

difficulty has been experienced in the past with separating 10-mil concentrator surfaces

from the male master during the electroforming process. These separation difficulties

have resulted in some of the concentrator geometric accuracy being lost. Therefore, since

weight is not a major problem in this application, a skin thickness of 15 mils was chosen in

an attempt to minimize handling difficulties and achieve a more accurate concentrator.

The particular scheme shown for attaching the parabolic surface to the torus is only one of

several which might be employed. This particular approach was chosen because it allows

the "effective" concentrator diameter to equal the outside diameter of the torus. This

simplifies the packaging problem since the overall concentrator diameter is minimized

(no overhanging torus). This scheme was used successfully on a recent solar concentrator

fabricated by the General Electric Re-entry Systems Department for NASA-Langley (Refer-

ence 8-1).

The center hold and the three notched areas at the outside diameter of the concentrator

would be formed during the electroforming process. This would be accomplished by masking

the male master so that no nickel was plated in those areas. This procedure has been used

successfully in fabricating concentrators in the past (References 8-2 and 8-3) and is considered

state of the art.

Liberty Mirror Coating No. 747 was selected for the concentrator surface because of its

measured high reflectivity (see Section 4.4.1.1-Volume II) on electroformed nickel. Also

this coating has been used with good results on solar concentrators in the past.
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The manufacturer of this coating states it will meet the following specifications (Reference

8-4):

a. Reflectivity- The coating* shall not have less than 88 percent total reflectiviW

for light in the visible region as measured with a Weston Photronic cell with a

viscor filter and a tungsten lamp supplying light at an angle of incidence of 22.5

degrees.

b° Adherence - No visible part of the coating shall be removed by the cellulose tape

test described below: The tacky surface of cellulose tape shall be carefully

placed in contact with a portion of the reflective surface and firmly rubbed against

that surface. It shall then be quickly removed with a snap action which exerts the

greatest possible stripping action of the reflective film.

C. Hardness - No evidence of film removal or film abrasion shall be visible to the

eye when the following test is applied: A pad of clean dry cheese cloth (previously

laundered) 3/8-inch in diameter, 1/2-inch thick, bearing with a force of one

pound on the coating shall be rubbed across the coated element in any direction

25 times.

d° Corrosion Resistance - There shall be no noticeable deterioration of the finished

surface when given the salt atmosphere test described here: The coating shall be

placed in a thermostatically controlled cabinet with a salt atmosphere for 24

continuous hours at a temperature of 95°F. The salt atmosphere shall be obtained

by allowing a stream of air to bubble through a salt solution containing 1 1/2 pounds

of sodium chloride per cubic foot of water.

*In the manufacturer's specification the reflectivity sample is deposited on a glass substrate.

Past experience indicates that the measured reflectivity of a coating on an electroformed

nickel substrate is essentially the same as that on a glass substrate (Reference 8-2).
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el Temperature - The coating shall function satisfactorily and shall not be damaged

by exposure to an ambient temperature of minus 60°F and plus 500°F.

Of course these tests are not sufficient to qualify the coating for use in a space application

but they do indicate that it has some of the required properties. Final selection of a coating

for the concentrator surface would require a test and evaluation program that considered,

among others, the effects of the following factors:

a. Temperature

b. Pressure

c. Low energy protons

d. Ultraviolet radiation

e. Micrometeoroids

If prior to a solar thermionic flight experiment a space experiment was conducted, such

as the one described in Reference 8-5 and Section 5.2.6 (Volume II) of this report, evalua-

ting the effects of the space environment on reflective surfaces this information would be

extremely valuable in selecting a coating for this application.

8.3.2 THERMIONIC GENERATOR

The design of the generator is presented in Figures 8-2 (sheets 1 and 2) and 8-3. The parts

description and the corresponding materials are listed in Table 8-2. The generator con-

sists of four identical thermionic converters spaced at 90-degree intervals around the

axis of the generator cavity. The emitter pieces of the converter are so shaped as to cover

almost completely the interior wall of the cavity absorber. The structural details of the

thermionic converters are very similar to those of the Advanced Solar Energy Thermionic

converter developed for JPL in a current program at Thermo Electron Engineering Corpora-

tion, except that the inter-electrode spacing is two-mils as opposed to the value of one-mil

used in the advanced converter. The most important design features are as follows:
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ao To reduce the danger of electrical shorting due to high temperature creep under

ground test conditions a re-entrant emitter sleeve is used to support the relatively

heavy emitter. The re-entrant emitter support also enables optimization of the

heat losses in the emitter support without having to use an excessively small

wall thickness in that member. A further advantage is that this structure permits

a reduction in radiation losses by a self-shielding effect.

b. The use of a concealed ceramic seal, well isolated from thermal expansion stresses,

and shielded by other converter components from accidental meteorite impact.

Co A one-piece collector structure from which the converter is attached to the

thermionic generator. Attachment at the point shown has the advantage that the

heaviest converter component is supported directly, at a point close to the con-

verter center of gravity.

dJ A finned radiator structure consisting of four fins so oriented that they have a

minimum look angle at the cesium tube of the converter. This is an important

feature to reduce both cesium reservoir tube dimensions and generator radiator

warm up time. The radiator fins can also be used to provide support at the end

of the cesium tubes by means of a thin metal washer, thus avoiding cantilever

movements on the cesium tubes resulting from vibration during the launch phase.

Figure 8-4 is a photograph of the Advanced Solar Energy Thermionic converter structure

which shows some of the features outlined here.

The converters are provided with a rectangular, beveled, flange around the cavity-emitter

pieces (Part 30) which helps to reduce interstitial radiation losses from the cavity absorber.

The common support for the four converters is a single block of niobium (Part 53), appro-

priately machined to accommodate the converter structures. The back plate (Part 62) helps

to protect the internal shielding of the generator from damage during handling.
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Figure 8 -4. Advanced Solar Energy Thermonic Converter Structure 



The front cone of the generator consists of two pieces: (1} an inner tungsten cone capable

of withstanding highly concentrated misdirected solar energy, and (2) an outer tantalum

shield (Part 55) designed to prevent impingement of concentrated solar energy on the con-

verter radiators.

The generator support block is connected to a support ring (Part 56) by means of four

tubes (Part 57) welded into the generator block and to the support ring.

8.3.3 GENERATOR-CONCENTRATOR SUPPORT STRUCTURE

The proposed approach for mounting the solar thermionic generator and concentrator is

shown in Figure 8-5.

The generator mounting ring (see Figure 8-3) would be supported from the parabolic con-

centrator torus by three truss tubes 120 degrees apart. The torus support ring would be

attached to the spacecraft body at the three points formed by the intersection of the three

truss tubes with the torus ring. As mentioned in Section 8.3.1, three small slots must

be formed in the parabolic concentrator surface to accommodate the truss tubes.

This design allows loads from the generator to be passed directly into the spacecraft body

without loading the parabolic concentrator. The RTV-60 bond between the parabolic sur-

face and the torus would minimize deformations resulting from loads transferred from the

torus to the parabolic surface.

8.3.3.1 Method of Attaching Concentrator Torus to Spacecraft

The attachment of the torus to the spacecraft body is shown in detail in Figure 8-5. The

attachment is designed to provide complete structural support of the torus during launch

acceleration and vibration loading, as well as allow the torus to thermally expand or

contract with respect to the spacecraft body without causing induced stresses.
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The support at point A consists of a single self-aligning, monoball type, bearing. This

point supplies support loads in three orthogonal directions but has no moment capability.

This allows rotation to take place at point A, but no relative motion between the torus and

the spacecraft.

The support at point B consists of a short swinging link hinged at each end. The hinge-lines

at each end of the link are parallel and are bothnormal to a line joining points A and B.

This allows point B to move relative to point A along a line joining points A and B, but does

not allow motion in anyother direction.

The support at point C consists of a short link with a self-aligning, monoball type bearing

at each end. At this point the torus can movewith respect to the spacecraft in any direction

in the plane definedby points A, B and C, but is restrained from moving in a direction nor-

mal to the ABC plane.

If, for example, thetorus were to increase in diameter with respect to the spacecraft

body,point B wouldmove away from point A along the line AB. Point C, however, would

move both radially outward and tangentially in a clockwise direction (looking downon the

torus). Due to rotations of the links, the torus would also move slightly out of plane from

its original position, but this anglewould be extremely small and of no consequencewith

the type of attitude control system proposed (seeSection 11.1).

8.3.3.2 Thermionic Generator Alignment

Locating the generator support ring on the generator mounting surface would be achieved

by accurately locating the four holes in the generator mounting ring. It is expected that

matched tooling would be used for this purpose, and that the operation would be performed

after assembly of the parabola, torus, and support structure was completed, and the

optical axis of the concentrator determined. Location of the generator axis to within 0.01

inches of the desired location could be readily achieved by this means.
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Angular alignment of the generator axis to the optical axis of the concentrator, and accurate

location of the generator along the optical axis would then be accomplished by shimming at

the four generator mounting holes against an optical reference.

It would be necessary to establish the optical axis and focal length of the concentrator

under solar and thermal conditions simulating those expected in space, since these quantities

can be significantly effected by the operating environment.

8.4 THERMIONIC GENERATOR DESIGN ANALYSIS

In Section 4 (Volume II) the solar concentrator and thermionic converter performance was

analyzed in detail and these performance estimates are considered to apply in this section.

However, the performance of the total generator (thermionic converters plus generator

structure) could only be estimated from past experience (see Section 4.3-Volume II) because

the generator design was not available to be analyzed. Now that the design has been established

its performance must be analyzed and compared with the assumptions made in Section 4.3.

8.4. 1 CAVITY FLUX ANALYSIS

A cavity flux analysis was conducted to determine the distribution of the solar and thermal

radiation within the generator cavity, and the cavity reradiation loss. For the purpose of

this analysis, the geometry of the generator cavity, which is shown in Figure 8-6, was

simplified to that shown in Figure 8-7. The simplification consists primarily of approxi-

mating the nearly hemispherical bottom of the generator cavity by a fiat bottomed cylinder.

The cavity was then divided into three principal areas which are shown in Figure 8-7 and

are defined as follows:

a. Area No. 1 consisting of the heated faces of the thermionic converters and the

interstitial spaces between them.
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b. Area No. 2 equal to the cavity aperture.

c. Area No. 3 consisting of the portion of the front cone exposedto the interior of

the cavity.

The numerical values of these areas and the corresponding radiation view factors are cal-

culated in Appendix B. Assuming that the cavity surfaces radiate like perfect diffused sur-

faces, and that they are each at a uniform temperature, it is possible to write simple

equations describing the distribution of radiant flux within the cavity. These equations are

presented in Appendix B for both the solar and the thermal componentsof the cavity radia-

tion. To obtain numerical solutions, the absorptivity of the heated faces of the thermionic

converters to the incident solar radiation was assumedto be 0.80. This relatively high

value would beachieved by means of fine grooving of the surfaces. In Appendix B it is

shownthat the corresponding thermal emissivity of these surfaces is approximately 0.56.

The solar absorptivity and the thermal emissivity of the cone surface exposedto the

interior of the cavity were assumedto equal 0.50 and 0.25 respectively. The cavity flux

distribution was then calculated for different values of incident solar flux and different

emitter temperatures. The results of these calculations are presented in Table B-1 of

Appendix B, andare showngraphically in Figures 8-8 and 8-9. The 1412watts curve,

shownin Figure 8-8, represents the energy entering the generator cavity at the design

point (seeSection4.4. 2-Volume II). The value of 1271watts represents a 10percent

decreasewith respect to the designpoint value. The energy available to the thermionic

converters, QE, plotted in Figures 8-8 and 8-9, was obtainedby subtracting the inter-

stitial and shielding radiation losses from the values of Q1listed in Table B-1 (Appendix

B). The interstitial and shielding radiation losses were determined in the following manner.

Of the two types of interstitial spacesbetweenconverters, represented by A1 and A2 in

Figure 8-10, only the A1 gapwas considered to contribute significantly to the cavity losses.

Any radiation penetrating the interstitial spaces represented by A2 has such a large chance

of striking the converter emitter pieces that this radiation was not considered as a loss. The

loss through area A1 is calculated in Appendix C andwas assumed to take place with an

effective absorptivity of 0.5. The cavity shielding losses were estimated by assuming that
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they would equal five percent of the black bodyradiation loss that would take place through

an area equal to that of the shielding. Thesecalculations are also shownin Appendix C.

It is interesting to note in Table B-1 (Appendix B) that the reradiation from the cavity for

the various conditions studied is always very close to black body radiation. At the design

point input of 1412 watts and a 2000°K emitter temperature, the cavity reradiation exceeds

black body radiation by eight percent.

8.4.2 CONVERTER HEAT TRANSFER AND GENERATOR ENERGY BALANCE

Now that the energy available for operating the thermionic converters has been established as

a function of emitter temperature and energy entering the generator cavity (Figures 8-8 and

8-9), the generator energy balance can be checked by computing the converter energy re-

quirements and comparing this with the energy available. This is the analytical procedure

for establishing the generator energy balance presented in Reference 8-6. An understanding

of the thermionic converter heat transfer is also useful in sizing the converter radiator struc-

ture. The magnitudes of the various converter heat transfer components are presented in

Section 4.2.2 (Volume I1) and are assumed to be valid for the converter design presented in

Figure 8-2. Some of the assumptions made in the converter heat transfer calculations are

reviewed in Appendix D. Table D-1 shows the calculated values of the energy required by one

converter at various values of emitter temperature and output current. Table D-2 (Appendix

D) shows corresponding values of energy rejected to the collector-radiator structure for the

same range of emitter temperatures and output currents. These values are plotted in Figures

8-11 and 8-12.

In addition to showing the energy required per converter, the dashed line on Figures 8-11 and

8-12 indicates how much energy is actually available to each converter for a solar input of

1412 watts. From Figure 8-11 it is apparent that there is approximately five percent {11 watts)

more energy available to each converter than is required to operate at the design point. A

number of alternatives could be proposed such as:
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a. It would be possible to operate the converters at the selected design point with a

slightly smaller solar concentrator.

b. With the specified value of input solar energy (1412 watts) the converters could be

operated at the same output current density at an emitter temperature of approxi-

mately 2090°K.

Co The converters could be operated at an emitter temperature of 2000°K and at an

output of 66 instead of 42.4 amperes.

do For the specified value of input energy (1412 watts), the converter emitter area

could be increased from 2 to 2.2 square centimeters and the converters operated

at an emitter temperature of 2000°K. This, of course, would increase the generator

power output by 10 percent.

Anyone of these approaches would further enhance the thermionic system performance; but

based on past hardware experience the recommendation is made that the five percent energy

factor be held in reserve as a safety factor. It is impossible to calculate, with a high-degree

of accuracy, the thermal losses from the thermionic generator. Therefore, any attempt to

account for an apparent five percent excess in energy is felt to be unrealistic. As a result

the energy available to the converters was assumed to be represented by a lower curve, than

the dashed line shown in Figure 8-11, that would pass through the design point. The effect

of this shift in the value of available energy to the thermionic converters is shown in Figure

8-12, where a new dashed curve has been drawn and is labeled "Design Characteristic. "

8.4.3 RADIATOR DESIGN

In Section 4.2.2 (Volume Ii_ the optimum collector temperature was estimated to be 998°K.

Figure 8-13 presents the collector dimensions corresponding to the thermionic converter

design shown in Figure 8-2. The calculations performed in Appendix E indicate that at the

design point, the collector structure must transfer 111.7 watts. Appendix E also presents
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the calculations establishing the thermal resistance of the collector structure at 1.38°C per

watt. Thus, for a heat transfer oflll.7watts, a temperature drop in the collector of 154°C

is expected, yielding a design point temperature at the base of the collector of 844°K. The

radiator designproblem then consists of determining the radiator structure of the lightest

weight which, with an initial temperature of 844°K at the base of the collector, is capable of

dissipating the expectedradiator heat load. Becauseof conduction losses down the emitter

support structure through the insulating seal into the midpoint of the collector structure,

the actual heat load seen by the radiator is somewhat larger than111.7 watts. For the radia-

tor design, this heat load has beenestimated at 128.1 watts. Figure 8-14 shows the basic

radiator geometry which was adoptedfor the converter design shownin Figure 8-2. The

converter support mechanism, the cesium tube, and the remainder of the generator structure

tend to define values for the parameters, a, e, and _ shownin Figure 8-14. Therefore, for

the selected generator configuration, the value of a is 2.03 centimeters, the value of e is 0.32

centimeters andthe value of _ is 42°50'. The radiator design problem is then reduced to the

determination of the radiator length, c, and the variation in fin thickness, h, which will yield

the lowest radiator weight to dissipate the required amount of heat at the collector base tem-

perature given. It was foundin the design optimization that for this particular radiator

requirement, variations in fin thickness do not result in significant decreases in radiator

weight, and the numerical calculations were therefore conductedassuming a constant fin

thickness. To minimize the radiator weight, various fin thicknesses were assumed, and for

each fin thickness, the radiator height, c, required to dissipate the heat load of 128.1 watts

was determined. The calculation procedure consisted of dividing the radiator into finite incre-

ments so that, for each increment, it was possible to determine the energy radiated by that

element and the amount of heat transferred to the next element. Knowing the cross-sectional

area of the fins, AF, and the quantity of heat to be transferred, the temperature gradient at
the interface with the succeedingelements, and therefore the changein element temperature,

can be calculated. This in turn permits calculation of the radiation from the next element.

Table E-1 (AppendixE) lists a series of twelve iterations made to determine the optimum

radiator designand to find the temperature distribution corresponding to various radiator

heat transfer loads. The results of these calculations are plotted in Figures 8-15, 8-16, and

8-17.
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Figure 8-15 shows the variation in fin height for a wide range of thicknesses and a collector

base temperature of 800°K. It also shows the variation in radiator weight corresponding to this

range of fin thicknesses. It is interesting to observe that even at the fin thickness of 0.08

centimeters (approximately 30 mils) the weight decreases as fin thickness is decreased. The

saving in weight realized by decreasing the fin thickness to values below 0.20 centimeters

was not considered to be worth the decrease in structural strength that occurs below that fin

thickness. Therefore, a fin thickness of 0.20 centimeters was selected for the design. Fig-

ure 8-15 also shows partial plots corresponding to a collector base temperature of 900°K and

the design fin thickness of 0.20 centimeters. Interpolating between the 800 ° and 900°K curves

for a collector base temperature of 844°K the required radiator fin height is 3.0 centimeters.

This point is shown in Figure 8-15 and labeled "Design Point. " The radiator weight per converter

corresponding to this fin height and a fin thickness of 0.20 centimeters is 66.6 grams.

Figure 8-16 shows the radiator temperature distributions in a fin 0.20 centimeter thick and

3.0 centimeters long for various values of heat transfer. It is apparent that the temperature

gradients in the fin are very small, even at relatively high values of heat transfer.

Figure 8-17 is a replot of the data presented in Figure 8-16 and shows the heat handled by the

converter radiator as a function of the collector base temperature. As will be seen later,

Figure 8-17 is useful in studying the converter warm-up rate.

8.4.4 CESIUM RESERVOIR DESIGN

The cesium tube and the cesium reservoir of the thermionic converters must be designed

so that, when the converter is at temperature, the cesium reservoir can maintain the designed

value of reservoir temperature with a minimum addition of heat. Also, in order to achieve

fast converter warm up, it is desirable to make the heat capacity of the cesium reservoir as

small as possible, Moreover, in order to achieve the largest variation in reservoir tempera-

ture for a given increase in the amount of heat added to the reservoir, it is necessary to make the

heat radiated by the reservoir at steady-state conditions as small as possible. Experience gained

inthe development of converters indicates that good strength and sufficient gas conductance for

converter outgassing purposes is achieved with cesium tubes made of nickel, with a 3/16-inch
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outside diameter and a wall thickness of 0. 015 inches. This tube size, and material, were

assumed for the purposes of this study. Figure 8-18 shows the cesium tube in relation to a

radiator fin and Figure 8-19 shows a cross section of the cesium tube and radiator fins in the

vicinity of the cesium tube. In order to calculate the cesium tube length required to achieve

the desired design value of temperature, it is necessary to compute a heat balance for each

element of the cesium tube along its length. Figure 8-19 shows that over the portion of the

cesium tube which faces the radiator fins, radiant energy transfer takes place between the

cesium tube, the radiator fins, and the space environment. The radiation view factors cor-

responding to the conditions of Figure 8-19 are derived in Appendix F which also includes

expressions for the heat transfer to any finite element of the cesium tube. The radiation heat

transfer characteristics of the cesium reservoir design are derived in the same appendix, and

they are plotted in Figure 8-20. It is of interest to note in Figure 8-20 that the addition of 0.1

watt on the cesium reservoir can result in a considerable change of the reservoir temperature.

For instance, Figure 8-20 indicates that if the reservoir is at 600°K, the addition of 0.1 watt

will raise the temperature to 634°K.

Table F-l, (Appendix F) presents the numerical results of the cesium tube length calculations.

The procedure was similar to that used in calculating the required height of the radiator fins.

Knowing the collector base temperature to be 844°K, an arbitrary value of heat transfer at

the origin of the cesium tube was assumed and then, element by element, (see Figure 8-21)

the change in the heat transfer along the length of the tube and the corresponding changes in

temperature were evaluated. This procedure was repeated until the arbitrary value of heat

transfer assumed gave the design reservoir temperature of 639°K. The predicted reservoir

radiation heat transfer given by Figure 8-20 was used in performing these calculations.

Three iterations were required to determine the necessary length of the cesium tube. (These

calculations are given in Table F-1 of Appendix F. )

Table F-2 (Appendix F) shows the results of calculations made to determine the effect of

collector base temperature on the equilibrium reservoir temperature for the chosen cesium

tube design. The results of these calculations are plotted in Figure 8-22.
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8.4.5 THERMAL CHARACTERISTICS OF COLLECTOR RADIATOR STRUCTURE

In this section the warm-up characteristics of the collector-radiator structure are determined.

These are needed to calculate the overall thermal response of the generator. The collector-

radiator structure may be visualized as a body of given specific heat which receives heat at

a specified rate and which radiates part of it in proportion to the fourth power of its tempera-

ture. Appendix G gives the detailed analysis of this case and the expressions required to

predict the corresponding rates of warm up.

Table G-1 (Appendix G) presents the specific heat calculations for the various components of

the thermionic converter and gives the calculated values of the specific heat for both the

collector-radiator subassembly and the cesium reservoir subassembly. Using the expressions

derived in Appendix G, itwas then possible to compute warm-up curve:_ for the collector-

radiator structure at various values of heat input. The results of these calculations are

presented in Table G-2 (Appendix G) and are plotted in Figure 8-23. From these results it is

apparent that in the typical heat transfer range of 110 to 130 watts, the time required for the

collector to achieve full temperature is approximately 16 minutes.

8.4.6 THERMAL CHARACTERISTICS OF CESIUM RESERVOIR

The results of the cesium reservoir design calculations discussed in Section 8.4.4 are plotted

in Figure 8-24 where the heat transfer received by the cesium reservoir is shown as a function

of the temperature difference existing between the base of the collector structure and the

reservoir. For the purpose of evaluating the generator warm-up characteristics, it is

of interest to determine warm-up curves for the cesium reservoir in the same manner used

for the collector-radiator structure.

Appendix H-1 summarizes the results of these calculations and the results are plotted in

Figure 8-25. It can be seen that relatively modest values of auxiliary heat input will insure

that the reservoir is up to temperature in a period of time consistent with the 16 minute

collector-radiator structure warm-up time.
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8.4.7 GENERATOR WARM UP AND RECOMMENDED START-UP PROCEDURE

Although the problems associated with the start up of solar thermionic generators have been

recognized they have been the subject of rather scanty analysis. The material presented in

this section is the result of a preliminary effort to predict the generator warm-up transient

under given conditions. The time available in this study did not permit a refined calculation

of these transients, but it is felt the results arrived at are sufficient to warrant the conclusions

drawn.

It has been assumed in this analysis that the generator load is such as to maintain an output

voltage of 0.85 volts at each converter at all times. To apply this assumption, it was necessary

to know what the output current of a thermionic converter would be as a function of cesium

reservoir temperature when the output voltage was maintained at 0.85 volts and the emitter

temperature at 2000°K. Since this type of data was not available, a specific test was made on

converter VIII-S-2* to determine the required output characteristics. The results of this test

are presented in Table I-3 in Appendix I. The corresponding data points have been scaled up

to the value of output current corresponding to the design point of this study in Figure 8-26.

With the help of Figure 8-26 and others, it was possible to predict the generator warm-up

characteristics under a variety of conditions. If it is assumed that, for all practical purposes,

the emitter structure of all converters reaches equilibrium temperature instantaneously, the

following calculation procedure can be used. Initially, the output of the converters is nil,

and Figure 8-12 predicts the amount of heat conducted to the radiator structure at whatever

emitter temperature is established (the latter being a function of the amount of input energy

control used during start-up). Knowing this amount of heat transfer, it is then possible to

use Figure 8-23 to determine the temperature rise of the collector-radiator structure during

the first 100 seconds of warm-up time. During this period of time, the cesium reservoir

receives a quantity of heat determined by whatever auxiliary input is used during warm up

and the amount conducted by the cesium tube, as given in Figure 8-24. Figure 8-25 can then

*Thermionic converter developed by Thermo Electron Engineering Corporation for JPL.
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be used to find the temperature rise of the cesium reservoir during the next increment of

time* Figure 8-26 tells whether the reservoir has increased in temperature to the point

where an output current is obtainedandwhether the heat transferred to the collector-radiator

structure must havechangedaccordingly. The procedure can thus be repeated for successive

time intervals to generate a set of response temperature and output current curves for the

collector and the cesium reservoir.

Figures 8-27through8-31 show the results obtained for special cases. The corresponding

calculations are presented in Tables I-1 and I-2 of Appendix I. Figure 8-27 illustrates the

case of generator warm up with the maximum flux (no flux control) and without the use of

auxiliary reservoir heating. For this case it was assumed that the heat capacity of the

cesium reservoir could be changed to approximately one-quarter of its calculated value in

order to avoid undue warm-up time lags at the cesium reservoir. Figure 8-27 shows that

under those conditions the warm up of the generator would take approximately 15 minutes.

Figure 8-28 shows what happens when, under the same conditions, heat is added to the cesium

reservoir in order to accelerate its warm up. It is assumed here that an automatic control

system stops the cesium reservoir heating when the collector has reached a predetermined

value of temperature which corresponds to a radiator fin temperature of 750°K. This

assumption would correspond to the case where for example, the auxiliary heat was added

to each cesium reservoir by means of a small solar concentrator supported from a radiator

fin by a bi-metallic element. When the radiator fin reaches a given temperature, the bi-

metallic element would deflect the solar concentrator and the addition of heat to the cesium

reservoir would stop. It can be seen in Figure 8-28 that it is possible for a premature warm-

up condition to exist with the net result that the warm-up time for the generator is barely

reduced. Thus, in the case of Figure 8-28, the cesium reservoir heat is interrupted at a

time when the base of the collector is not sufficiently hot to continue maintaining the cesium

*To accelerate the rate of warm up it is possible to study the use of thermionic converters

that do not have a cesium reservoir. For such a design all the cesium would be vaporized

to the correct vapor pressure when the converter envelope was at operating temperature.

Such converters are not present state of the art, and therefore were not considered in

this study.

8-48



/
q

o

II

0

0

0

S_I_I_IdI_V - I 'iM_t_-2_lD _LflcI_LflO _I_t_I_A_OD

0

0

o

0

I

o

o 0

t._

o

co

o
o
t_

o

0

02

0

0
0

I
00

8-49



0
SHHHdI_IV - I 'INHHHfl9 _LfldJ_flO HHIHHAhIO3

cq o

_0 - Hllil VHHdlA!H,L

o

8-50



r._

<

>

mr/_

_ r.z.] -

<

>
0

I

_-

_-

,°

zo

o
c,1

0

S_HHclb_V - I _,LN_tHHaqD ,LfldLflO H,H,LHZANOD

O
4

O

m

\
\

o _ t_o

0 _

_ N

_ m

_a N

II II

o

\
\

\

%
\

%

I
o

O

o
o

\
01

I

I

o

o

o
o
00

_D

o
c_

oo
U_

_D

Z
0
[o

N

o
°_"I
r/l

i

o

o
o

I

0

._._

8-51



0

_HZd_V- I iN_HH_3 &DdiDO _ZL_AMOD

0

g,o

o
°r,,.I
g]

!

_D

o

¢q
I

GO

CD

h_
°F.._

M - _H_V_d_
0

8-52



reservoir temperature attained. Therefore, the cesium reservoir temperature drops, the

output current drops, and the collector base temperature follows in such a manner that, in

recovering from this condition, the overall warm-up time is just about equal to that achieved

without the addition of reservoir heat. Figure 8-29 shows the same case, but with a reduced

value of energy input to the cesium reservoir. In this case, the condition of premature heating

of the cesium reservoir is avoided, but the overall generator warm-up time is still almost

15 minutes. It is possible that a more judicious selection of the amount of heat added to the

cesium reservoir and of the cut-off point could result in a generator warm-up time of only ten

minutes.

Figure 8-30 illustrates generator warm up with flux control adjusted so as to maintain

a constant emitter temperature of 2000°K. No reservor heating is assumed and, again, the

heat capacity of the cesium reservoir has been assumed equal to about one-quarter of the

value calculated for the design given in Figure 8-2. The results for this case indicate that

the generator will not fully warm up. Thus, at the end of 16 minutes, Figure 8-30 shows that

the collector base temperature has stabilized at about 660°K with a corresponding stable value

of reservoir temperature of 580°K. This value of reservoir temperature is not able to produce

an output current of sufficient magnitude to bring about a further warm up of the collector.

Figure 8-31 shows that the results obtained with a flux control maintaining a 2000°K emitter

temperature, and no reservoir heating, can also be avoided with the addition of about two

watts to the cesium reservoir during generator warm up. However, the warm-up time,

predicted by Figure 8-31, is still of the order of 15 minutes.

Selection of a generator warm-up method requires consideration of the mechanical complexity

and reliability of available devices to control the cavity input energy and to provide temporary

additions of heat to the cesium reservoirs; and on the ability of the thermionic converters to

operate for short periods of time at emitter temperatures approximately 400°K in excess of

their design operating temperature. While the last item needs to be explored in the laboratory

to a much greater extent it is felt that the experience to date indicates that thermionic con-

verters will probably be capable of undergoing limited overheating without deleterious effects.
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If this proves to be the case then there is noadvantageto controlling the cavity input energy

or to using cesium reservoir heating during the warm-up phase, since the warm-up time is

not significantly reduced by either of these approaches. However, the use of controls would

tend to increase the system complexity, weight, and reduce the reliability. For these reasons

the tentative conclusion is that generator warm up can best be accomplished without any form

of control on the cavity input energy andwithout the use of auxiliary heat on the cesium

reservoirs.

8.4.8 SUMMARY

The thermionic generator design presented in Figure 8-2 has beenshownto be capable of

producing an output of 144watts whenoperated in space with a solar concentrator 50 inches

in diameter. For a nominal generator energy input of 1180watts this output corresponds to

a generator efficiency of 12.2 percent. The total calculated generator weight (seeAppendix K)

is 5.68 pounds, corresponding to a specific power of 25.3 watts per pound, or a specific

weight of 39.5 poundsper kilowatt.

The analysis indicates that a generator warm-up time of approximately 16 minutes is achievable

either by controlling the input energysothat anemitter temperature of 2000°K is always

maintained and using auxiliary heat input to the cesium reservoir or by allowing the maximum

energy input (nocontrol on input energy) without reservoir heating. Of the two methods,

the latter is favored becauseit is felt that thermionic converters will probably be capable of

withstanding this suddenoverheating for short periods of time and that the required flux con-

trol and auxiliary reservoir heaters would prove to be complicated and lower the system

reliability.

The generator performance analysis substantiates the assumptions made regarding generator

losses in Section4.3 (Volume II) and the performance estimates andconclusions reached in

Section 4 (Volume I1) are valid for the generator design proposed.
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8.5 GENERATOR ELECTRICAL CIRCUIT

To maximize the information obtained from the thermionic generator and the chances of con-

ducting a successful experiment requires flexibility in the generator electrical circuit.

8.5.1 PROPOSED CIRCUIT DESIGN

The proposed circuit design is presented in Figure 8-32. The operation of this circuit is

described below.

a. Switches K 1 and K 5 operate as a pair. When K 1 is closed K 5 is open and when K 5

is closed K 1 is open. Switches K2 and K6, K 3 and K7, and K4 and K 8 operate in

this same manner.

b. The load resistor (R5) can be varied by the stepping switch K 9 in five distinct steps -

0, 25, 50, 75 and 100 percent of full load.

c. Resistors R 1 through R4 are fixed. The value of these resistors is chosen so that

when in series with a converter the converter will operate at the design point.

d. To control all the switches then requires five command channels.

e. For series operation of all four converters switches K 1 through K4 are closed,

which, since they operate in pairs, requires switches K 5 through K 8 to be open.

f.

For separate operation of each converter, switches K 1 through K 4 are open which

means that switches K5 through K 8 are closed.

g. To operate converters I, II and IV in series and place converter III in series with

resistor R3, switches K1,K2, K4 and K 7 are closed and switches K3, K5, K 6 and K 8

are open.
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Thus, through five command channels the capability exists to operate each converter separately

or any combination in series as well as varying the generator load resistor in five increments

from 0 to 100 percent of full load.

The advantages of this approach over wiring the four converters in a fixed series arrange-

ment are significant. For example, assume that the four converters were operating in series

and one of them experienced an open circuit failure. The thermionic generator output would

immediately drop to zero. If the four converters were permanently wired in series with no

flexibility in the electrical circuit nothing could be done and the generator performance aspects

of the experiment would be ended. However, with the electrical circuit proposed here the

faulty converter would be removed by command from the series string and the experiment

continued with the remaining three converters in series.

The design of a circuit to perform the functions described here was discussed with the Kinetics

Corporation. Based on a preliminary evaluation of the problem they suggested the use of

motor actuated switches controlled by ground command. They estimated the entire control

circuit could be flight packaged in a box smaller than four inches on a side and weighing less

than six pounds. The voltage drop across the switch contacts was estimated to be less than

30 millivolts.

The details of the circuit design require further investigation to determine the impedance

balance between the leads and the load resistors, the size of the load resistors, a method of

dissipating the waste heat from the load resistors, etc.

8.5.2 GENERATOR LEAD LOSS

8.5.2.1 Proposed Design

The electronics associated with the electrical circuit would be located in the main spacecraft

body behind the solar concentrator. This location was selected because it would provide

shielding and a controlled thermal environment. Two electrical leads from each converter
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would be routed from the generator downthe inside of the generator support tubes to the

main spacecraft body. Number 3 AWGstranded copper wire is recommendedfor the leads.

The characteristics of this wire are summarized below (Reference 8-7)"

Diameter (including insulation) - 0.3 inches

Number of strands - 7

Cross sectional area of conductor - 0.053 in 2

Resistivity (at 25°C) - 0. 205x 10-3 ohms/ft

Current carrying capacity - 80 to 105amperes

Weight (including insulation) - 0. 175lb/ft ,

Since there wouldbe eight leads and only three support tubes one tube would have to handle

two sets of leads. This would be accomplished by taking two leads downthe inside of the tube

and the other pair of leads would be strapped to the outside of the support tube, the outside

pair of leads would be located on top of the support tube so they would not increase the con-

centrator blockage area or be exposedto direct concentrated solar energy during initial

orientation periods.

At the design point the generator outputwould be 42.4 amperes at 3.4 volts (144watts). The

lead resistance for this mode of operation would be:

Lead resistance = resistivity x length
-3

= 0.205 x 10 x8x5

-3
= 8.2x 10 ohms,

This results in an I2R loss of

I2R loss = (42.2) 2 x 8.2 x 10 -3 = 14.25 watts

which represents approximately ten percent of the generator output. The corresponding

voltage drop would be 0.34 volts. A loss of this magnitude is not considered prohibitive
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particularly since the converter voltage output measurementswould bemade at the generator,

thus allowing the generator output to be computedexcluding the lead losses.

The weight of the generator leads would be 40 ft x 0. 175 lb/ft = 7 pounds.

8.5.2.2 Alternate Approaches Considered

The following alternate approaches were considered for reducing the lead weight and I2R

losses:

a. Aluminum leads

b. Employ the generator support arms as leads

c. Use a d-c/d-c converter to increase the generator output voltage and decrease the

current to be carried

d. Locate the control electronics near the generator.

Each of these approaches are discussed here.

Aluminum could be used instead of copper as the lead material. For the same size lead this

would reduce the lead weight by a factor of 3.3 but because of aluminum's higher resistivity

the I2R loss would be increased by a factor of ten. Therefore aluminum leads would only be

helpful if the lead diameter could be made significantly larger. Unfortunately it is difficult

to increase the lead size above No. 3 AWG wire without increasing the solar concentrator

blockage area.

Using the generator support arms as electrical leads offers the potential advantage of per-

forming two functions with the same member, with a resulting saving in weight. For the

proposed circuit design four rather than three support arms would be used with this approach.

One support arm for each thermionic converter. Each arm would consist of two concentric

tubes bonded together with an electrical insulator. One of the concentric tubes would serve as

the collector lead from the converter and the other tube as the emitter lead. The tube wall
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thicknesses would be adjusted to yield the same resistance in each tube*. To maintain the

same concentrator blockage area that the three support arm approach gives would require

that the outer tube in the four arm approach have an outside diameter of 0.563 inches. A

minimum inside diameter on the inner tube of 0.375 inches would be required so that the

voltage tap and thermocouple leads could be brought down from the generator inside the

support arms. This leaves 0. 563 - 0. 375/2 = 0. 094 inches for the tube walls and the insulating

material. Assuming an insulation thickness of 0.04 inches the tube wall thicknesses could not

exceed 0. 054 inches. A cross section of the support arm is shown in Figure 8-33.

Y

Y-O°08

+

E LE CTRICA L INSULATOR

T
l 0.565 IN

0.375 INo DIA-

METER

DIAMETER

Figure 8-33. Cross Section of Support Arm

*This approach for using the generator support tubes as electrical leads has been studied by

JPL. Hardware has been built for JPL by EOS and evaluation test conducted on this hard-

ware at JPL. The results of these tests indicated that this is a feasible approach which in

addition to saving weight also provides a convenient means for cancelling the magnetic

fields produced in the high current carrying leads.
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For equal resistivity in each tube (assuming the tubes are of equal length) the inside

diameter, Y, of the outside tube is defined by the following equation:

r ]
I (Y- o. 08)2 - o. 3752]A1 =4 (0.5632 - y2) = A2 =-4-
L J

Solving for Y yields the following tube diameters and cross sectional areas.

Outer Tube - OD = 0.563 inches

1D = 0.516 inches

Wall thickness = 0.047 inches

Cross sectional area = 0.0397 square inches

Inner Tube OD = 0° 436 inches

ID = 0.375 inches

Wall thickness = 0.061 inches

Cross sectional area = 0. 0397 square inches

The lead resistance is given by:

Lead resistance -
PL

A

where

p = resistivity, ohm-inches

L = lead length, inches

A = cross sectional area, square inches.

Assuming aluminum for the support tubes the lead resistance of the support tubes alone

(not including the lead lengths that would have to be added to each end of the support tube)

would be
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Co This approach requires adding another component to the experiment which adds

inefficiency, weight, volume and most importantly reduces the experiment

reliability.

The final approach considered was to mount the control electronics behind the generator.

This would result in very short leads (approximately 8 inches per lead) and thus eliminate

the I2R loss problem. It also would greatly reduce the weight of the leads. This approach

appears very attractive but must be investigated in greater depth before a definite recom-

mendation can be made. Some of the points that must be considered are given below:

a. How small can the control electronics package be made ?

b. Can the package be located near the generator without increasing the solar concen-

trator blockage area or interfering with the radiation heat transfer from the

thermionic converter radiators?

c. Can the electronic package survive in this exposed location, or must it have a

controlled environment similar to the one provided in the main spacecraft body?

These questions cannot be answered until the electrical circuit is designed in detail and

this was beyond the scope of this study. If further investigation reveals that the control

electronics can be located near the generator then this approach would be preferred to the

one selected in this study.

8.5.3 MAGNETIC FIELD CONSIDERATIONS

When a current is passing through a conductor a magnetic field is produced. For large

currents the resulting fields can be significant and may produce vehicle disturbance torques

as well as interfere with the proper functioning of other spacecraft components. To avoid

this potential problem each pair of thermionic generator leads would be twisted upon

themselves. This allows the field produced in one lead to be cancelled by the opposing
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Lead resistance =

-6
7.87 x 10 x26x8

0.0397
= 0.041 ohms.

At the generator operating point the I2R losses associated with the support arms alone

would be

I2R loss 42.22= x 0. 041 = 72.9 watts,

This loss represents 50 percent of the generator output and is considered prohibitive.

The I2R losses could be reduced significantly by using copper in place of aluminum but

copper is not a satisfactory structural material for the generator support arms. For this

application it does not appear that the generator support arms could be used as leads unless

the diameter of the tubes could be increased and this could not be done without increasing

the solar concentrator blockage area which is undesirable. If the four converters were

wired permanently in series and only two leads had to be brought down this approach would

be more attractive.

A d-c/d-c converter could be located next to the generator to step up the generator output

voltage and thus reduce the current that had to be carried by the leads. This approach

was rejected for the following reasons:

a. The d-c/d-c converter must be located near the generator and therefore could

not take advantage of the shielding and controlled thermal environment provided

in the main spacecraft body.

Do Locating the d-c/d-c converter near the thermionic generator without increasing

the solar concentrator blockage factor, or interfering with the view factors from

the thermionic converter radiators, might be difficult.

* The resistivity of aluminum at 25°C is 7.87 x 10 -6 ohm-inches

8-65



field in the other lead. This is a common technique which is used effectively on spacecraft

to minimize the magnetic effects of current loops.

8.6 INSTRUMENTATION

Adequate instrumentation is essential to a complete evaluation of the solar thermionic

experiment. The proposed instrumentation is given in Table 8-3. On the basis of the

information received from this instrumentation, coupled with the electrical circuit proposed

in Section 8.5.1 and the supplementary data obtained from the priority "A" secondary

experiments, the performance of the thermionic generator (including the individual

converters), solar concentrator, and attitude control subsystem could be evaluated, any

malfunctions detected, and in some cases corrective action taken to counter a malfunction.

8.6.1 QUANTITIES MEASURED

In order to evaluate the thermionic converter performance the voltage output of each

converter (measured at the generator) and the voltage drop across the generator load would

be measured (see Figure 8-32). In addition to the voltage measurements; the emitter,

collector, fin, seal and cesium reservoir temperatures would be measured on each

converter. These temperature measurements, because of the wide ranges and high levels

involved, would have to be made with thermocouples. Thermocouples have the disadvan-

tage of providing low voltage inputs to the telemetry subsystem but in this case it cannot be

avoided. The recommended type of thermocouple for each of the temperature measure-

ments is given in Table 8-3.

The thermionic converter temperature measurements coupled with several temperature

measurements on the generator structure would provide sufficient information to analyze

the generator thermal behavior. The temperature on the generator back cover and the

outer edge of the shield cone, parts 62 and 55 respectively in Figure 8-2, would be

measured. In addition the temperature drop on one of the generator block supports (Part

57 in Figure 8-2) would be measured. These generator structure temperatures would also

be measured with thermocouples.
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The solar concentrator surface temperature profile and reflectivity would be measured.

The temperature profile would be measured along two radial lines 90 degrees apart. These

temperature readings would provide a measure of the temperature extremes the concentra-

tor was exposedto throughout the orbit and allow calculation of any deviations in the focal

point location resulting from thermal distortion. Resistance thermometers would be used

to make these temperature measurements. The reflectivity measurementwould be made

by a less sophisticated reflectometer than the one employed in the Solar Reflective Surfaces

experiment described in Section 5.2.6 (Volume II). The major objective of this measure-

ment wouldbe to indicate any degradationby making a relative comparison betweenthe

reflectivity at a given time and the initial reflectivity value. The location of the reflecto-

meter is shownin Figure 8-34.

CONCENTRATORCENTERHNE

REFLECTOMETER HEAD

\
4-INCH DIAMETER HOLE IN CONCENTRATOR

ARABOLIC CONCENTRATOR

REFLECTOMETER OPTICS

AND DRIVE MOTOR

Figure 8-34. Reflectometer Location

The major reflectometer components and the drive motor would be located directiy below

the center of the concentrator. The reflectometer head would be mounted in an arm which

passed through the four-inch hole in the center of the concentrator. This arm would be

motor driven so that the reflectometer head would be able to cover a circular band on the

8-68



concentrator surface. The length of the reflectometer arm would be sufficient (approxim-

ately five inches) to place the measuring headoutside the shadowarea of the thermionic

generator so that the surface being measuredwould have received maximum exposure to

sunlight. The reflectometer headwould be rotated to a new location on a periodic basis*,

so that a representative reflectivity, measuredover more than one spot on the concentrator,

could be obtained. Rotation of the head is also necessary becauseleaving it permanently

in oneplace would shield the surface being measuredfrom someof the environmental

factors (micrometeoroids, ultraviolet radiation, etc.). The reflectometer would be sup-

ported by the main spacecraft structure andwouldnot be in contact with any portion of the

concentrator structure. The reflectivity of the solar concentrator surface is considered of

sufficient importance to warrant this reflectance measurement in addition to those made in

connectionwith the Solar Reflective Surfaces experiment (Section 5.2.6 - Volume II).

The orientation accuracy canbe determined by monitoring the output signals from the sun

sensors and the thermal sensors located aroundthe aperture opening. There are two fine

sun sensors (pitch andyaw) and two pairs of course sunsensors (pitch and yaw). This

arrangement yields four signal outputs that must be monitored. There are four thermal

sensors and measuring the output of each yields four additional voltages or eight total. Of

course, measurement of these quantities would be made as part of the attitude control sub-

system diagnostic instrumentation evenif they were not neededto evaluate the primary

experiment.

In addition to the data obtainedfrom the instrumentation associated with the primary

ment, the priority "A" secondary experiments would provide supplemental information on

the micrometeoroid, ultraviolet radiation, and proton and electron environments encount-

ered. This information would be beneficial in evaluating the solar concentrator performance

since these factors are believed to be potential sources of reflectivity degradation. A

further measure of the concentrator reflectivity performance would be obtained from the

secondary Solar Reflective Surfaces experiment.

* This function would be executeduponstored or ground command.
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8.6.2 FREQUENCY OF SAMPLING

To completely evaluate the primary experiment, including the transient phase, it would be

necessary to read the quantities outlined in Table 8-3 every 15 seconds during 16-minute

periods (approximate) at the beginning and end of the daylight portion of the orbit. In the

intervals outside of these two 16-minute periods, readings would be made on a five minute

basis throughout both the light and dark segments of the orbit. This scheme represents the

most desirable arrangement but if it imposes too great a load on the telemetry subsystem

an alternate procedure could be used. This alternate approach would follow the sampling

cycle outlined above on a periodic rather than a continuous basis. For example this sam-

pling cycle would be used during the initial phase of the experiment and at points where the

transient data was needed to evaluate special circumstances which arise. When not opera-

ting on this sampling cycle each of the quantities would be recorded once every five minutes

throughout the daylight portion of the orbit only. This latter approach, although not pre-

ferred, would provide a fairly complete picture while imposing a significantly smaller

demand on the telemetry subsystem. This subject is discussed further in Section 9.3. The

final decision on which approach to use is made in Section 10.

8.7 POWER REQUIREMENTS

The power required to operate the thermionic experiment is minimal. Approximately

1.4 watts would be required on a continuous basis for the temperature measurements.

During the daylight portion of the orbit only, the cesium reservoir heaters and reflectometer

would require a continuous 0.4 and 2.6 watts respectively. In total then the primary experi-

ment would require 1.4 watts continuously with an additional 3.0 watts during the daylight

phase of the orbit.

8.8 MODE OF OPERATION

Once the spacecraft was in orbit the solar thermionic experiment would operate as described

below.
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Under normal conditions the four thermionic converters would be connectedin series and

the load adjusted so at design temperatures the converters would operate at their peak

efficiency point.

When the spacecraft emerged from the earth's shadow*the attitude control subsystem

would orient the solar concentrator to the sunwith the desired 0.1-degree accuracy. This

would take approximately two minutes to accomplish (seeSection 11}. Noauxiliary heat

would be used to warm up the cesium reservoirs and no controls would be employed to limit

the solar concentrator input to the generator cavity. As a result of this the emitter temper-

atures would reach approximately 2400°Kfor a short period of time. The thermionic

generator would reach the design operating point and steady state operation in approximately

16 minutes after acquiring the sun.

During steady state operation the cesium reservoir temperature would be adjusted to the

optimum value by small electrical heaters (0.1 watt maximum). The heater control circuit

would be designed so that it would attempt to maximize the converter power output for the

given load and emitter temperature. During the daylight portion of the orbit the tempera-

tures and voltages outlined in Table 8-3 wouldbe monitored, the data stored, and telemetered

back to earth when the spacecraft was over anappropriate ground station. The desired

frequency of sampling the measuredquantities calls for reading each quantity every 15 sec-

onds during the transient warm-up phase (approximately 16 minutes} and then once every

five minutes throughout the remainder of the daylight period. The steady-state modeof

operation would continueuntil the spacecraft enteredthe earth's shadow.

Upon entering the earth's shadow the solar input to the generator would stop and the emitter

temperature would start to drop. As the emitter temperature dropped, the generator power

output would decrease until at an emitter temperature of approximately 1750°K the generator

power output would become zero (this assumes the cesium reservoir heaters are able to

optimize the reservoir temperature as the emitter temperature decreases and that the

*In the Mission A case for the first four to six months of the experiment the spacecraft

would not encounter any shadow periods.
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design point load is maintained). The instrumentation outlined in Table 8-3 would be

sampledevery 15 secondsduring the initial 16 minutes (approximate) of the shadowperiod

and every five minutes through the remainder of the dark cycle.

At periodic intervals a generator EI curve would be measured by varying the generator

load resistance. This would be accomplished by ground command. In order to checkon the

individual converters performance, they would periodically be commandedinto series with

their individual load resistors and the resulting performance recorded.

If a thermionic converter were to fail it would be removed from the series circuit by ground

commandandthe experiment continued with the remaining good converters.

If the thermionic generator performance were to degrade, the operating point could be

altered by changingthe load resistance. This would also be achieved by ground command.

In general, commandedchangesin the generator electrical circuit would be held to a mini-

mum for reliability reasons.

8.9 OTHER CONSIDERATIONS

In addition to the design point performance considered thus far, some consideration was

given to off design operation resulting from a decrease in the input energy to the generator

or an orientation error larger than the designed limits. Also, the possibility of replacing the

generator with an identical generator while in space was investigated. These three areas

are discussed in the following sections.

8.9.1 EFFECT OF A DECREASE IN INPUT ENERGY

It is conceivable that during the experiment life, the energy input to the thermionic genera-

tor could decrease from the design value. For example this might occur as a result of a

decrease in the solar concentrator reflectivity. The effect of a ten percent decrease in

input energy is considered here.
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Figure 8-8 shows that for a ten percent decrease in input energy, the energy available to the

converters decreases by about 32 watts per converter. Figure 8-11 indicates that for this

decrease in energy, the locus of thermally balanced conditions in the generator will be a new

dashed line located approximately 25 watts lower than the dashed line shown in the figure.

If, with this amount of decrease in input energy, the thermionic converters still see a load

such that their output voltage remains at 0.85 volts, the converter emitter temperatures

will decrease to a point where the heat available in the cavity is sufficient to produce the

corresponding output current. Thermionic data taken on the Series VIII converters de-

veloped by Thermo Electron Engineering Corporation for JPL, indicates that the output

current at 0.85 volts falls by 50 percent when the emitter temperature is reduced from

2000°K to 1900°K. The corresponding cesium reservoir optimum temperature decreases

by approximately 35°K. Thus, the locus of possible performance (at 0.85 volts) can be

shown in Figure 8-11 as a line which connects the design point (2000°K emitter temperature

and 42.4 amperes of output current) to the 21.4 ampere point on the 1900°K emitter temper-

ature line. This locus crosses the dashed line corresponding to the ten percent decrease in

energy entering the cavity at an emitter temperature of approximately 1960°K. At

this point the output current would be 34 amperes. This represents the new thermally

balanced condition in the generator.

If the reservoir temperature decreases by 35°K for a decrease of 100°K in emitter temper-

ature, a decrease from 2000 ° to 1960°K emitter temperature would require a decrease in

reservoir temperature of 14°K. It is interesting to note the extent to which the thermal

characteristics of the converter design tend to establish a new cesium reservoir temperature

as close as possible to the optimum value corresponding to the emitter temperature of

1960°K. Figure 8-12 indicates that the heat transmitted to the radiator structure is 109

watts for an output current of 34 amperes at 1960°K. Figure 8-17 shows that the corres-

ponding collector base temperature at this value of heat transfer is 795°K. Figure 8-22 in

turn shows that for a collector base temperature of 795°K, the corresponding equilibrium

reservoir temperature is 630°K. Therefore, with a ten percent decrease in input energy,

the converter performance would be optimum with a reservoir temperature which decreases

by 14°K from its previous optimum of 639°K. The converter heat transfer parameters are
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such that the cesium reservoir temperature would actually decreaseby 9°K instead of the

desired 14°K. Fortunately, the reservoir temperature will remain within the range of con-

trol provided by the cesium reservoir heater, assuming that the heater has a rating of

0.1 watt. It is necessar:_in order to take advantageof this self-adjusting feature, that the

cesium reservoir control operate so as to always optimize the output current of a converter

rather than to attempt to maintain a predetermined value of cesium reservoir temperature.

The design of the control circuitry which would achieve this was not attempted in this study.

8.9.2 EFFECT OF MISORIENTATION

The effects of misorientation were calculated for angular deviations of 10 and 20 minutes.

For a 50-inch diameter solar concentrator with a rim angle of 60 degrees (corresponding

to a focal length of 55.0 centimeters) these deviations correspond to focal plane displace-

ments of 0.160 and 0.320 centimeters respectively. Figure 8-35 shows graphically the

procedure used to determine the changes in input solar energy resulting from these values

of misorientation. The focal spot produced by the concentrator was divided into concentric

rings and the energy density was calculated for each ring. The generator aperture was

divided into four quadrants corresponding to the heated faces of the thermionic converters.

The area in any one focal spot ring, within any given quadrant, was determined graphically

and the corresponding amount of energy falling within that quadrant was computed.

Table J-1 (Appendix J) shows the results of these computations for the focal plane displace-

ments of 0.16 and 0.32 centimeters. It shows that the overall decrease in input flux for a

focal plane displacement of 0.16 centimeters is 11.8 percent; thereby corresponding to a

decrease of about one percent for each minute of misorientation. For a displacement of

0.32 centimeters, the decrease in total input energy to the cavity is 19.1 percent, still

corresponding to a decrease of one percent for each minute of misorientation. Table J-1

shows that the total amount of energy falling in each individual quadrant can be highly non-

uniform for even small amounts of displacement. For a focal plane displacement of

0.16 centimeters, Table J-1 shows the total amount of energy falling on quadrant III is

474. 0 watts, while the total amount of energy falling on quadrant I is 175.8 watts or less
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than one-half the amount falling in quadrant III. This tends to imply that misorientation

could have a significant influence on the temperature distribution among converters. How-

ever, no attempt has been made to determine how serious this effect is and it seems that

an experimental approach to answer this question is in order.

Some of this data is already in existence. As a first approximation, the predicted effect

of misorientation is that the energy input to the cavity will decrease by a percentage closely

equal to the minutes of arc of misorientation, and that the effect on generator performance

will be somewhat similar to the effects of decreases in input flux. For a decrease in input

flux of ten percent, it was found that the output current decreased from 42.4 to 34 amperes

(at 0.85 volts) with a corresponding decrease in emitter temperature from 2000 °. to 1960°Ko

For a decrease in input flux of 20 percent, one could expect double the reduction in perfor-

mance or the current would drop to 25.6 amperes. This subject is discussed further in

Section 11.2.

8.9.3 INFLIGHT GENERATOR REPLACEMENT

The possibility of replacing the thermionic generator with another identical generator while

in orbit was considered. Obviously if this could be easily accomplished within the design

constraints the chances of conducting a successful experiment would be significantly in-

creased. Although several approaches were considered only one appears to be compatible

with the imposed constraints of this application. This approach is outlined here in detail.

8.9.3.1 Description

The proposed scheme is shown in Figure 8-36. The two generators are mounted back to

back to a spindle supported by a close tolerance bearing at each end. Substitution of a

generator is achieved by accurately rotating this spindle through 180 degrees. Changing

back to the original generator could be accomplished by rotating back through 180 degrees.

The generators do not rotate through more than 180 degrees, thus enabling the electrical

connections to be made through flexible pigtails rather than necessitating the use of slip

rings.
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Referring to Figure 8-36, rotation of the spindle is produced by a motor through a friction

clutch. Rotation of the crank withdraws the locking pin by means of a link. When the

locking pin is withdrawn the crank continues to rotate until it bears against the spring

loaded detent. This then causes the arm to rotate with the crank, and since the arm is

rigidly attached to the spindle by splines, the spindle and the two generators now rotate

under the action of the motor.

When the arm has rotated through 180 degrees, it bears against an adjustable stop, causing

the crank to override the spring loaded detent. At this point the arm stops rotating but the

crank continues to rotate until the locking pin is once again engaged. At nearly full engage-

ment the locking pin depresses a microswitch, cutting off the drive motor.

To reverse the process, a ground command causes the microswitch to short and the motor

to rever§e.

The areas requiring close tolerance machining are the locking pin, the holes it engages in

the arm and housing, and the spindle and support bearing housings. The adjustable stops

do not require very fine adjustment since the locking pin is self-engaging. It is anticipated

that each generator would be shimmed and aligned at its four mounting holes in a fashion

similar to that described in Section 8.3.3.2.

The major advantage of this approach over others considered is that it does not increase the

solar concentrator blockage area appreciably over than encountered with the proposed design

shown in Figure 8-3.

This approach appears feasible but requires further investigation before it could be recom-

mended for use in a flight experiment application of the type considered here. Some of the

major areas that need to be studied are outlined below.

a. How would the electrical leads be taken care of? Would one common set of

leads be provided and the electrical connections switched when the generater was

rotated or would each generator have its own set of leads?
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b. Would the thermal losses be greater as a result of the generator support

technique?

c. Could this schemebe made to operate satisfactorily under the temperatures

involved?

d. Would the increased weight make it difficult to design the support structure

to withstand the launch loads?

8.i0 SUMMARY AND CONC LUSIONS

The solar thermionic experiment outlined in this section is based on present state-of-the-

art capability and would provide a very complete evaluation of solar thermionic system

performance in the space environment.

8.10.1 EXPERIMENT CONFIGURATION AND WEIGHT

The thermionic system configuration is shown in Figure 8-37. The estimated weight of the

solar thermionic experiment is given in Table 8-4.

Table 8-4. Thermionic Experiment Weight

COMPONE NTS

Thermionic Generator

Solar Concentrator

(including Torus)

Support Structure

Reflectometer

Control Electronics

Electrical Leads

TOTAL

WEIGHT

(Pounds)

5.7

12.5

2.0

5.0

6.0

7.0

38.2

8-78



I

i

r_/

I

!

Jo

0

r_r_

I

0

O0

I

I



r_

\

i
!

r_

o_

_1_ °

_o

-{

/
/

/
/,

v

0

r_

0
F_

O<

OZ
m_

_Z
<0

r/l

r_

o
,r,,t

0

o

0
r/l

I

_0

0

8-81



The configuration shown is mounted directly to the main spacecraft body at three support

points.

The launch vehicle fairings allow ample volume so that the generator can be fixed in its

operating position with respect to the solar concentrator. This eliminates any requirements

to fold the generator in close to the concentrator during launch and then deploy the generator

after the fairing has been ejected.

8.10.2 PERFORMANCE

The estimated thermionic system performance is summarized in Table 8-1. Actually the

performance estimates were made in Section 4 of Volume II but since the generator design

had not been established at that point it was necessary to make assumptions regarding the

generator losses. The energy balance calculations performed in this section substantiate the

assumptions made in Section 4 and therefore the original performance estimates are con-

sidered valid.

8. i0.3 CONTROLS

As a result of this investigation there appears to be no incentative for using controls during

the generator warm-up phase. Controlling the input energy to the generator cavity or

applying auxiliary heating to the cesium reservoirs does not appreciably reduce the warm-

up time. If the thermionic converters can withstand short temperature spikes (up to 2400°K)

on the emitters a simpler and more reliable system will result if no controls are used

during the warm-up.

During steady-state operation the cesium reservoir temperatures would be held at their

optimum values by small electrical heaters of approximately 0.1 watt capacity. The control

circuit for these heaters would be designed to maximize the converter output for the given

load and emitter temperature.
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8.10.4 CONCENTRATORBLOCKAGEAREA

The thermionic system performance calculations assumeda concentrator blockage factor

(see Section 4.4.1.3-Volume II) of five percent. The actual blockage factor was computed

in Appendix L for the configuration shownin Figure 8-37 and found to be 4. 9 percent.
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9.1 INTRODUCTION

SECTION 9

INSTRUMENTATION

This section considers the total spacecraft instrumentation required and the resulting load

on the telemetry subsystem. Also included is a general discussion of methods of making

various types of instrumentation measurements.

9.2 QUANTITY OF INSTRUMENTATION

The instrumentation can be considered in three parts: (1) that required to completely

evaluate the solar thermionic experiment, (2) the instrumentation associated with the

secondary experiments, and (3) that needed to monitor critical spacecraft components.

The instrumentation associated with the primary and secondary experiments was covered

in detail in Sections 8.6 (Table 8-3) and 5.4* (Table 5-3) respectively.

A limited amount of instrumentation is necessary to keeping the spacecraft functioning in

space. If ground personnel have the benefit of information such as solar cell temperature,

battery charging current, battery cell temperature, quantity of attitude control gas re-

maining, etc., it is possible to diagnose problems and take corrective action before a

failure occurs. Similarly, this sort of information is valuable in determining why a failure

occurred. A preliminary estimate of the quantity of critical component instrumentation

required is given in Table 9-1. If the spacecraft were designed in detail, there would un-

doubtedly be other critical component measurements to add to this list. Twenty miscel-

laneous measurements are added to the total to allow for any contingency.

These quantities would be read once every thirty seconds over the orbit period. All of the

measurements should be recorded at approximately the same time. Although desirable,

it is not absolutely necessary that this instrumentation be read every orbit. It could be

*Located in Volume II
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Table 9-1. Critical Component Instrumentation (a)

Ao

S.

Instrumentation

Power Subsystem (b)

1. Temperature of Battery

Package

2. Battery Voltage

3. Battery Charge and

Discharge Voltage
4. Solar Cell

Temperature on Each
Paddle

5. Array Voltage

6. Array Current

Attitude Control Subsystem (c)

1. Gas Pressure (1 Tank)

2. Number of Valve Operations

(3 Channels, 6 Valves Total)

3. Vehicle Angular Rates

(3Gyro Voltages)
4. Roll Position

. Flywheel Voltsge and Speed

(2 Flywheels)

C. TT&C Subsystem

1. Voltage Monitors

2. Temperature

Monitors

3. Event Monitors

Miscellaneous

Number of

Measurements

2

6

3

3

4

Range of

Output Signal

O-5v

20-38V

0-28v

4, 3 Amps

{Typical)

0-5V

0-5V

0-5V

0-SV

0-5V

0-5V
0-5V

0 -5v

D. 20

TOTAL 61

NOTES:

Comments

Measurements

Made With

Thermistors

Measurements

Made with Re-

sistance Thermometers

Measurements

Made With

Thermistors

(a) A telemetry accuracy of one percent is adequate for all of the instrumentation in this

table. The quantities should be read every 30 seconds throughout the total orbit period.

Although desirable, itis not necessary that these measurements be recorded every

orbit.

(b) Evaluation of the power subsystem performance also requires knowledge of the accuracy

with which the solar array is oriented to the sun. This information is derived from

the primary experiment instrmne_tation (see Table 8-3).

(c) Additional information which is essential to evaluation of the Attitude Control Subsystem

is available from the primary experiment (see Table 8-3).
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sampled on a periodic basis, say once per day, but this introduces the possibility that a

critical situation could occur between sampling periods and it would not be detected.

Therefore, if telemetry capability is available, this information should be recorded every

orbit. This situation is investigated further in Section 10.

9.3 DATA COLLECTED PER ORBIT

Knowing the number of instrumentation measurements to be made, the telemetry accuracy

required, and the frequency of sampling the number of bits* per orbit that must be handled

by the telemetry subsystem can be calculated. This information is summarized in Table

9-2 for the three categories of instrumentation. The basic information used to formulate

this table was taken from Tables 5-3*,* 8-3, and 9-1. In establishing this table, only the

priority "A" and priority "B" secondary experiments were considered. Since final de-

termination of how many, and which, of the priority "B" secondary experiments to be in-

cluded on each of the three spacecraft designs will not be made until the designs are

formulated (Section 13), the telemetry data requirements presented in Table 9-2 represent

a maximum.

If the same secondary experiments are included on the spacecraft and the same subsystem

instrumentation is employed, Table 9-2 shows that the bits of data collector per orbit will

vary significantly between the three orbits considered. For example, the highly elliptical

orbit, because of its long orbit period, generates three times as much data per orbit as

the modified sun-synchronous orbit and five times as much as the low altitude circular

orbit. The large number of bits collected per orbit could represent a data storage and

transmission problem depending on the spacecraft power and ground station coverage

available. This potential problem is considered further in Section 10.

*When a measurement has N equiprobable outcomes, the average amount of information

associated with an outcome is defined as log N. In particular, if the logarithm is taken

to the base two, the value indicates the number of decisions between pairs of equiprobable

outcomes and the unit has been named the "bit" (an acronym for binary digit).
**Located in Volume II
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Table 9-2. Bits of Data Collected per Orbit

St'BSYSI'EM OR EXPERIMENT

J'IJE II MJONIC (;ENJ.:llA TOIl

M

( lille N _ .\ I'ION

E

PR IMA ItY EX PI: R IM E NT "D ITA 12;

SPAt'f: I:VAI,t;A'i'It)N OF SOl,M(

llI:I"L[:('T[VI: S1TRI" _C ES

m

>.

©

M 11'111GI Lii'3/It(Ill)

M IZASi:III:MI XI

lqi()l'l )X A:',I) E LF[('rI'I{ON

,%PEt'TItA AND DLItECTIt)N

ME.\_L'III':MI;N'I'S OF L I,I'I/AVI()LlYI'

_{AI)IAFll)N F I,UX

,_PACE EVALUATIt)N OF I'IIERMAI.

COA'['iNGS

I.ASEIt I.:X PIiII IM E NT

I,t)0.' ThIIUS'I 1': I,ECTI/IC ENGINI2

NUMBER OF

MEASUIIE,ME NT5

i! POWER St!BSYSTEM

.1 ATTITtII)E CONTROl, SUBSYSTEM

_5
'I'T&I! SUIISySTE h_

M[SC E I,I.ANE()U S

3L

6

II

I (t)

lilTS

PEll SAMPLE (d)

186

294

186

36

246

8

48

30

3O

I"It.I'X_UI':NCY 01"

SAMPI,ING

Once every 15 seconds for 30

n_intltcs al]d (}nee cw, ry 5 In(notes

uver the rt!n_aindt,F o[ the orbit

period.

()nee every 15 succmd$ for 3O

minutus aml once every 5 minutes

over thc rcmaindcr of the orbit

peril,d.

Once uvcry 15 seconds Lot" 30

minutt.,n and ,)net: cw'ry 5 minutes

owu" kbc remalaldcr _)1 thc orbit

period.

Once pcr t)l'bit 81tcr steady stotc

has been reached ill daylight

)orlion of the orbit.

IH'I'S Pl';ll t}ltlH I (a)

I tl Ill

25. 800 5'2, tO0 2 l, 770

(t. (;21)) (tH (26, 5110) (2.25o)

9, t 60 18,820 8, 7!)7

(1,8t0) (!), 13(I) (799)

5, S;H) I I, 80I 5,598

(1,012) (ll, OI)l)) (508)

iO, 79c) _2,850 39, 165

(7, :102) ( I 1,9301 (3,557)

18(; l _6 18(;

()net. p_.r orbit. 96 96 96

Once per minuto. 'I, 1711 30, 25O 3, t70

t)ncc per nlinutt, durin R thr sun- 3O.5OO I. 2_q I 1,900

Hght portion of the ,)rbii.

Oncc per orbit altur Steady start, I_ tz_ 48

has bcen rcached m daylight

portion of tht, orbit,

()nee 1)_,1" orbit. 3(I 30 30

(_nct, i)t,r minute tor i. t hours 252 252 252

every 1.2 days,

5t c cItAI)IATION I-:FFECTS ON SO[,AR 9 54 ()net, per orbit aftcr _tuady statt,

1; I': l, LS ha_ bee n reached in daylight

portion of the orbit.

SPACE EVALUATIt}N OF A NEW

INI"RAREI) DETECTOR Ii 36 Once per orbit.

St)l_[I X-flAYS 2 12 Once per minute (luring daylight

portion of the orbit.

SOLAR )'- RAYS d 36 Once per minute during daylight

portion of the orbit.

LYMAN A I,PllA EXPERIMENT 81 486 Once per minute during daylight

portion of the orbit.

I.:AR'FII A LI_EDO 120 720 Once every 2.5 minutes during

the daylight portion of the orbit.

St.:Ct)NDAItY EXI)EIIIME NT TOTA [_ 342 2,052

I 1 86 Ew, ry 30 seconds over total orbit.

i8 i08 Every 30 seconds over total orbit,

14 84 Every 30 seconds over total orbit.

20 120 Every 30 seconds over t.taL orbit.

CIIITICA I. COMPONENT "FOTA I*S 63 378

TOTA LS 454 2,724

:16 36 36

l, 490 8,570 725

4,470 25,700 2,180

80,200 347,000 29,400

c c 17,400

10I, 832 416,448 68,723

16,480 55,500 6,370

26,800 90,800 10,420

28, 800 70,500 8,10O

29,800 100,800 l 1,600

93,800 l-/2 t7,600 36,490

a ()rbil I - Modified sun-synchronous 1000 NM-1Ol. 84 degrees inclination - orbit period, 121 mint_tes - maximum shadow pt*riod, 24 minutes)

Orbit I1 - llighly elliptical (200 by 25,080 NM-45 degrees inclination -orbit period, 840 minutes - maxinmm shadow period, 125.5 minutes)

Orbit Ill - ix_w altitude circular (325 NM-30 degrees inclination - orbit period, 96.5 minutes - maximum shadow period, 36 minutes)

h Tht' ftknal'cs ill brackets at'q. lor the alternate fnodt, of cyelillg the instrumentation associated with the primary experiment. This method of operation calls for samplthg

lhe quatltiti_,_ once cw!ry fiw, nlmutcs during the day-light portion of the orbit.

c Not e_lmpatih[e with this orbit.

d Bits ta,r sanq)h, figures based t_ll a ttqemetry accuracy of one percent.

i' Thc Second act of number apply to the highly elliptical orbit case where the two earth sensors art, not includt'd as part of the ultravto[_.t experiment.
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If the bits of data collected per orbit becomes prohibitive, there are several ways the total

could be reduced. First, the bits per orbit associated with the primary experiment could

be reduced by going to the "alternate mode" of sampling the data described in Section 8.6.2

(Figures presented in brackets in Table 9-2 represent this mode of operation). Although

this reduces significantly the bits of data from the primary experiment, it only has a small

effect on the over-all total. A second, and very effective way to reduce the data to be

handled, is to reduce the number of secondary experiments included on the spacecraft. In

general, the engineering type secondary experiments contribute very few bits of data per

orbit and, therefore, would do very little to reduce the total. However, some of the scien-

tific secondary experiments contribute a significant percentage of the total bits collected

per orbit. By elimination or alternating* the design of these experiments the data collected

per orbit could be greatly reduced. A third alternative is available and consists of making

the measurements in selected groups on a periodic basis rather than sampling all of the

quantities every orbit. For example, consider the modified sun-synchronous orbit (Orbit I

in Table 9-2). Assume that in the normal mode of operation, only the instrumentation

associated with the primary and secondary experiments is recorded and that the primary

experiment instrumentation is sampled on the "alternate" cycle described in Section 8.6.2.

The total bits of data collected per orbit would be:

7,302 bits/orbit -

101_ 832 bits/orbit -

109,134 bits/orbit -

Primary Experiment

Secondary Experiments
Total

Now, at regular intervals (probably on earth command) the above data would be omitted

and the data required to evaluate the transient operation of the primary experiment recorded

along with the critical component instrumentation. This combination yields the following

total:

*Altering the experiment design would involve reducing the frequency of sampling, reducing

the number of ranges, samples, etc.
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40,790 bits/orbit -

93,800 bits/orbit -

134,590 bits/orbit -

Primary Experiment

Critical Components
Total

Thus, by taking this approach, the same basic information could be obtained while reducing

the bits of data collected per orbit by forty-three percent (134,590 bits per orbit compared

to 236,422 bits per orbit). However, it should be recognized that this approach does have

a major disadvantage. Since all of the data is not recorded each orbit, it is always possible

that an important event may go undetected.

It the bits collected per orbit must be reduced, a decision will be made on which of these

approaches to use when the telemetry subsystem design is formulated in Section 10.

9.4 METHODS OF MAKING MEASUREMENTS

The depth of this study does not allow a detailed consideration of how each of the required

measurements would be made. However, a general consideration of some of the accepted

methods of making such measurements on space vehicles is included here. The types of

measurements to be made generally fall into four groups: (I} temperature sensors, (2} cur-

rent sensors, (3) voltage monitors, and (4} event monitors. Each of these is discussed

below.

9.4.1 TEMPERATURE SENSORS

Temperature measurements can be made with thermistors, resistance thermometers or

thermocouples. The selection of the type of sensing device depends primarily upon the

temperature to be measured and the voltage level to be supplied to the telemetry equipment.

Internal spacecraft temperatures are generally measured with thermistors because the

temperature range is relatively small and the large temperature coefficient of resistance

of thermistor materials permits generation of a high-level output signal. Resistance

thermometers will not provide an adequately large temperature coefficient of resistivity to

provide directly the normally desired 0 to 5 volts d-c signal when used between 0° and ll0°F.
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Whereas, platinum will only provide a ratio of R (max)/R (min) of 1.3, a typical thermistor

will offer a ratio of 25. Therefore, a resistance thermometer would be used in a similar

voltage divider circuit to measure temperatures on outer surfaces of the satellite, where

the temperature excursions may be large. Both thermistors and resistance thermometers

can be obtained in very small sizes and can be operated at low power levels (e. g. 40 milli-

watts or less). Thermistors are available commercially that will handle temperatures

as high as 575°F and resistance thermometers that will operate as high as 980°F.

One very promising device for measuring solar cell temperatures is the silicon resistance

thermometer. This resistance thermometer is a thin silicon wafer several thousandths

of an inch thick, a tenth of an inch long, and approximately a tenth of an inch wide. Its

resistance will change approximately 0.4 percent per degree F change in temperature

above ambient. The resistance of such small wafers can be made conveniently as high as

5000 ohms at room temperature. This feature is the main reason for choosing silicon

resistance thermometers over other kinds of temperature measuring devices, such as

platinum resistance thermometers which usually cannot provide more than 1000 ohms in

a single thin unit. Platinum thermometers will change approximately 0.2 percent degree F

change in temperature above ambient. Similar figures at other temperatures are given

below for the comparison of platinum and silicon resistance thermometers.

TEMPERATURE

CHANGE

RESISTANCE CHANGE PER DEGREE F

PLATINIIM SILICON

75°F to -100°F 0.21% 0.31%

75°F to 0°F 0.20% 0.34%

75°F to +200°F 0.20% 0.47%

The combination of a larger temperature coefficient of resistivity and a larger nominal

resistance value enables a silicon resistance thermometer to develop a greater portion of

the desired 0 to 5 volts dc output signal than can a platinum resistance thermometer with

the same or less power consumption. Thus, the silicon resistance thermometer permits a

temperature measurement to be made with considerably less power and a simultaneous

increase in accuracy.
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Thermocouples, because of their very low voltage output (millivolts), are generally not

used when the temperature measurement can be made with a thermistor or a resistance

thermometer. However, extremely wide temperature ranges or very high temperatures

necessitate the use of thermocouples. For example, the temperatures associated with the

thermionic generator, which range over thousands of degrees and reach levels as high as

3865°K, will have to be measured with thermocouples.

Common thermocouple materials and their recommended range of operation in vacuum are

Thermocouple

given below:

Maximum Operating

Temperature (°F)

Output at
Maximum

Operating Temp-

erature (mv)

C opper-Constantan
Chromel-Alumel

W-5Re/W-25Re

750 20

2500 55.5

5000 40.6

9.4.2 CURRENT SENSORS

Electrical currents to and from the primary sources of power would be measured in order

to aid in estimating the degree of charge of batteries and the condition of the solar cell

array. The sensing and signal conversion techniques by which this is best done will depend

upon the characteristics of the solar array, batteries, and current control equipment. One

method which may be used is a magnetic amplifier type circuit in which the current to be

measured is passed through a winding about the magnetic core, where it modifies the induc-

tance of the core. Thus, by measuring the core inductance, the desired current is known.

9.4.3 VOLTAGE MONITORS

A complete knowledge of how well a spacecraft is functioning requires that numerous voltages

be monitored. This is most simply done by using a voltage divider circuit which reduces

the voltage being monitored to a voltage suitable to the telemetry system.
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9.4.4 EVENT MONITORS

Devices would be installed on the satellite to report the accomplishment of certain important

events. For example, the extension and locking of extendable booms, deployment of solar

paddles, spacecraft separation from the booster, etc. The closing or opening of electrical

contacts is often used as the means of confirming the accomplishment of such events.

9.5 SUMMARY AND CONCLUSIONS

This study establishes the instrumentation requirements to the degree necessary to define

the information to be derived from the spacecraft and the data storage and telemetry re-

quirements. It will be necessary to consider the exact means of making the various meas-

urements in detail when a preliminary design of the spacecraft is developed.

Table 9-2 summarized the type and number of measurements to be made and the corre-

sponding bits per orbit thatthetelemetry subsystem must handle. This information is used

in Section 10 to aid in selecting the secondary experiments to be included with each of the

three missions, and to establish the data storage requirements.

9-9/9-10



SECTIONi0

TELEMETRY, TRACKINGAND COMMAND
SUBSYSTEM

PRINCIPAL CONTRIBUTOR:

D. L. HAGEN



SECTION10

TELEMETRY, TRACKINGAND COMMANDSUBSYSTEM

10.1 INTRODUCTION

The Telemetry, Tracking, and Command (TT&C) Subsystem provides the means for

tracking the satellite, commanding its operation, and obtaining both experimental and

housekeeping data from it. This section of the report establishes the general requirements

of the TT&C subsystem and presents the trade-offs involved in the subsystem design.

The TT&C subsystem design must be based on several factors of major importance. Among

the most critical of these are:

a. One-year operational lifetime

b. Nearly isotropic antenna pattern

c. Primary power limitations

d. Equipment weight limitations

e. Compatibility with established ground facilities.

First, a brief investigation of ground station coverage and orbital characteristics is pre-

sented. Pertinent capabilities and limitations of appropriate STADAN* ground facilities

are described. A theoretical comparison of appropriate telemetry modulation techniques

is made, and a promising technique is recommended. This analysis is sufficiently broad to

remain applicable even with significant deviations from the original mission concepts.

Brief analyses of the tracking and command links are then presented.

From these analyses a reasonable modus operandi for the TT&C subsystem is established,

and estimates are made of typical satellite equipment for each of the three missions

selected in Section 6 (see Table 6-6).

*NASA-Satellite Tracking and Data Acquisition Network. Additional material on this is

included in Appendix Sections M and N.
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10.2 SELECTION OF TRACKING AND DATA ACQUISITION NETWORKS

10.2.1 TYPES OF ORBITS TO BE SERVED

Five general types of orbits were initially considered for the solar thermionic flight

experiment (see Section 3.1). During the mission analysis phase of this study, the desirable

was directed toward these three orbits:

I - Modified sun-synchronous circular orbit at 1000 nautical miles altitude and

an inclination of 101.84 degrees

II - Highly elliptical orbit, with 45-degree inclination, perigee of 200 nautical

miles, and apogee of 25,000 nautical miles

HI - Low-altitude circular orbit at 325 nautical miles altitude with 30-degree

inclination.

10.2.2 APPROACH TO SELECTION OF NETWORKS

The capabilities and limitations of each NASA network which might serve such a scientific

experiment were investigated. Air Force networks and the NASA Manned Space Flight Net-

work (MSFN) were not considered, since they would probably not be available for this

program.

This left only the following two major networks for consideration:

a. Satellite Tracking and Data Acquisition Network (STADAN)

This is the relatively new title for the combination of the Minitrack Stations, the

Wideband Data Acquisition Net, and the Goddard Range and Range Rate (R&RR)

System. There are now 15 ground stations in this network.
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be Deep-Space Instrumentation Facility (DSIF)

The DSIF comprises three large ground stations with two more under construction.

At present, it is used exclusively for lunar and deep-space probes, and has not

been required in previous earth-satellite programs.

10.2.3 RECOMMENDED NETWORKS

The STADAN system appears to be the most suitable for the three orbits considered here. *

Minitrack tracking (fixed-beam interferometer) should be satisfactory for Orbits I and III.

The elliptical orbit (II) would probably require supplementary range and range-rate tracking

in order to establish early, accurate measurements of the orbital parameters. Minitrack

telemetry and the STADAN command equipment are recommended for all three of the orbits.

10.3 BRIEF DESCRIPTION OF STADAN

10.3.1 COMPOSITION OF STADAN

The NASA-Satellite Tracking and Data Acquisition Network (STADAN} consists of three

major functional systems (Reference 10-1). The first, Minitrack, has been used to track

all U.S. satellites containing suitable beacons (and some USSR satellites) since the begin-

ning of the space programs in 1957 and 1958. In addition to its tracking functions, the

Minitrack System has the faeilities for receiving telemetry data in the 136 to 137-megacycle

and 400 to 401-megacycle bands and has a planned capability for limited reception in other

assigned space bands.

The second major functional system comprises the Data Acquisition Facilities (DAF}.

This system is equipped with multifrequency, high-gain antennas, and its capability of

handling large quantities of data at high rates exceeds that of the standard Minitrack

*The STADAN system is the most suitable for each of the five types of orbits origInally eon-
sidered except the solar probe orbit. A solar probe orbit would require the DSIF system.

Information on the DSIF tracking system is included in Appendix (_
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telemetry systems currently in use. The first station in this network (ULASKA) has been

constructed and is in operation near Fairbanks, Alaska. The second station (ROSMAN I)

near Rosman, North Carolina, has been constructed and is in operation. A third station

(GILMOR) near Fairbanks, Alaska, is rapidly approaching an operational status; a fourth

(ROSMAN II) - in addition to the Rosman, North Carolina, Site - is under construction; and

a fifth station is now under construction near Canberra, Australia. Since such a wideband

capability is not required for this mission, the DAF will not be discussed further.

The third major system of the STADAN system is the transportable Range and Range-Rate

Tracking System (R&RR) which complements the tracking capabilities of the Minitrack net-

work by providing improved tracking data for space probes, launch vehicles, and satellites

in highly elliptical orbits.

Minitrack stations are located at the sites listed in Table 10-1. Approximate locations are

shown in Figure 10-1 (Reference 10-2).

The three mobile stations for the R&RR systems are presently located at:

Rosman, North Carolinap USA

Scottsdale, Arizona, USA

Carnarvon _ Australia.

The General Electric Company has recently been awarded a contract to build an additional

R&RR ground station at Fairbanks, Alaska, with an option to build another station at

Santiago t Chile.

10.3.2 ANTENNA ELEVATION LIMITS

The minimum elevation angle at which the ground antennas can be operated limits the

ground station coverage for low-altitude earth orbits. These limits are caused by physical

obstructions of the line-of-sight, mechanical stops on the antenna drive system, and
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Table 10-1. Geodetic Location of Minitrack Stations

Station East Longitude
Elevation

Latitude (Feet) Datum

Blossom Point, Md.

College, Alaska

East Grand Forks,
Minnesota

Ft. Myers, Fla.

Gilmore Creek,
Alaska (NO. 1)

Gilmore Creek
Alaska (NO. 2)

Johannesburg,
SouthAfrica
(40-foot dish)

Lima, Peru

Mojave, Calif.
(40-foot dish)

Quito, Ecuador
(40-foot dish)

Rosman, N.C.

St. Johns,
Newfoundland

Santiago, Chile
(40-foot dish)

Winldield, England

Woomera, Australia

282-54-48.170 N-38-25-49.718 15

212-09-47.383 N-64-52-18.582 527

262-59-21.556 N-48-01-20. 668 823

278-08-03 .887 N-26-32-53.516 12

212-29-05.794 N-64-58-36o572 966

212-30-18.045 N-64-58-42 o667 1,013

027 -42 -27 o931 S-25-52 -58.862 4,990

027-42-27o931 S-25-53-08o 025 --

282-50-58.184 S-11-46-36.492 161

243-06-02.776 N-35-19-48.525 3 _044

243-06-47. 808 N-35-19-54.407 --

281-25-14. 770 S-00-37-21. 751 11,703

281-25-08.109 S-00-37-23 o241 11,690

277-07-40,532 N-35-12-00.499 2,883

307-16-43.240 N-47-44-29 o049 208

289-19-51.283 S-33-08-58.106 2,280

289-19-51.283 S-33-09-04o934 2,281

359-18-14.615 N-51-26-44 o122 215

136-52-19. 634 S-31-23-30 o638 436

Vanguard

Vanguard

Vanguard

Vanguard

Vanguard

Vanguard

E. 30 Eur

E. 30Eur

Vanguard

Vanguard

Vanguard

Vanguard

Vanguard

Vanguard

Vanguard

Vanguard

Vanguard

Eo 30Eur

Sydney
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antennanoise introduced whena significant portion of the receiving antennabeam intercepts

the comparatively warm earth.

The antennasused for orbit determination in the STADAN system are rigidly fixed. Their

fan-type antenna patterns have three-db beamwidth elevation angles of 52 degrees for the

fine resolution systems and 37 degrees for the ambiguity resolving system.

The broad beamwidths of the Minitrack telemetry antennas will limit their lower elevation

angles to 10 to 15 degrees. The latter figure should be safe to use for planning purposes.

The Wideband Data Acquisition Facilities have 85-foot dish antennas with much narrower

beamwidths. However, the Fairbanks Station, which is of major interest because of its

proximity to the North Pole, is located in the Gilmore Creek Valley, twelve miles north of

Fairbanks. This valley limits the elevation angle to 13 degrees in the northerly direction.

Table 10-2 shows the elevation limits of the Fairbanks antenna as a function of azimuth

angle.

The Range & Range Rate tracking stations can be assumed to have a lower elevation limit

of 15 degrees for the same reason as the Minitrack stations.

10.3.3 MINITRACK TELEMETRY SYSTEM

Minitrack comprises an organization of fixed ground stations, located throughout the world,

which provides a means of precision tracking, command, and telemetry reception for

satellites and space probes, together with a communications system to transmit this infor-

mation to a computing and data processing facility at Greenbelt, Maryland.

A large number of the original stations were located along the 75th meridian to intercept

satellite orbits with inclinations of less than 45 degrees. New stations have been located

at higher latitudes to cope with more nearly polar orbits. Furthermore, ten of the stations

have been supplemented with additional antennas aligned specifically for polar orbit.
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Table 10-2. Electrical and Horizon Limits - Gilmore Antenna*

Azimuth Angle (degrees) Minimum Elevation Angle (degrees)

000 ° (North) 13.0

010 10.5

020 9.0

030 7.8

040 6.0

050 5.0

060 4.2

070 4.0

080 4.8

090 (East) 4.5

100 6.8

110 7.8

120 9.4

130 10.0

140 10.7

150 11.2

160 11.5

170 10.7

180 (South) 13.0
190 10.0

200 8.5

210 6.8

220 5.2

230 4.0

240 4.0

250 4.0

260 4.0

270 (West) 4.0
280 4.0

290 4.7

300 5.7

310 7.5

320 8.0

330 10.0

340 10.7

350 11.3

*Source: C. Maskaleris, Tracking & Data Systems, GSFC 7/28/64
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Telemetry receiving systems at 136 megacycles are available at all STADAN ground

stations. In addition to this, 400-megacycle receiving systems are available at those

stations having 40-foot dishes and at the DAF stations having 85-foot dishes. * Due to the

limited availability of the 400-megacycle facilities, the emphasis in this study is on the use

of the 136-megacycle equipment.

The Minitrack Mod I Telemetry Receiver System is tunable over a frequency range of

136 to 137 megacycles. Five IF pre-detection bandwidths are available ranging from ten

kilocycles to one megacycle. Demodulation circuits are provided for AM and FM signals.

Preamplifiers having nominal 3.5 db noise figures are available at all stations. Some

stations have tracking filters, phase-lock demodulators, and diversity combiners.

All stations have nine-Yagi array antennas, providing a gain of about 19 db. Three stations

(Johannesburg, Santiago, and Quito} have sixteen-Yagi array antennas, providing a gain of

about 22 db.

Detailed descriptions of the ground station equipment are contained in Reference 10-1 and

are summarized in Appendix N of this report.

i0.3.4 MINITRACK TRACKING SYSTEM

Historically, the first functional network to be constructed for satellite tracking was the

Minitrack Network, which was transferred from the Department of Defense to NASA at the

time NASA was established.

*The installation of 40-foot parabolic dishes has been completed at three Minitrack stations

in the southern hemisphere (Johannesburg, Santiago, and Quito).
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The prime Minitrack satellite tracking system consists of radio interferometers operating

in conjunction with a transmitting beacon in the payload itself. Since the establishment of

the network, certain enhancements have been added to the original station equipment to

provide tracking capability by optical and Doppler means as well. While the original tracking

equipment operates on or near 108 megacycles (the frequency assigned for IGY activities),

additional equipment tunable over the 136 to 137 megacycle region is now in operation.

A1fhnll.oeh h_'ir,_11_,r. 'l'h,_, c_rn_ , ..'if --'i'n"n_'nn'r'_f'_.............................r,_'r,'l'_-i'n f_'hl"r'_ wh'ir, h fllr,'l:.h_r' "i'n_rc_fl._,e. "Jr.9

flexibility.

Essentially, the radio interferometer measures two of the three direction cosines of a line

from the center of the station to a satellite as a function of time while the satellite passes

through the beam pattern of the receiving antennas. The third direction cosine is thus de-

fined and the angular position of the satellite determined.

From a series of independent angle measurements from various ground stations, satellite

orbital elements may be computed.

Phase comparison techniques are used to measure the difference in arrival time of the

wavefront of a distant point source at pairs of receiving antennas separated by known dis-

tances in wavelengths of the transmitted frequency. Measurement of this radio path dif-

ference is accomplished by a comparison of the phase angle of the signal received at one

antenna to that received at another.

The antennas are aligned along baselines in the east-west and north-south directions. Since

the phase measurement system is capable of indicating phase difference to a small fraction

of a wavelength, two pairs of antennas are aligned along orthogonal baselines many multiples

of a wavelength long to obtain good angular resolution. These are termed "fine" antennas.

As a radio source passes through the antenna pattern, the relative phase will cycle from

0 to 360 degrees for each wavelength added to the radio path difference. Since the phase

meters repeat their readings every 360 electrical degrees, a number of different space

angles will produce identical phase readings during a satellite transit. This ambiguity is

i0-i0



resolved by employing shorter baselines which produce fewer integral numbers of wave-

length change as the radio source passes through the antenna beam. These are termed

"medium" and "coarse" antennas. Ambiguity antenna information determines the number of

full wavelengths to be added to the relative phase angle measured at the fine antennas to

define a data point.

The Minitrack antennas are of the slot type with ground screens, pedestal-mounted and

parallel to the ground plane. All are very precisely positioned geographically and accurately

leveled. The polarization is linear and perpendicular to the long dimension of the antenna.

The radiation pattern is fan-shaped, the plane of the fan being perpendicular to the long

dimension. The original 108-megacycle fine antenna array is oriented to produce a fan beam

101 degrees in the north-south direction and 11 degrees east to west at the 6 db points. The

ambiguity antennas contain fewer elements with a consequent broader beam pattern and re-

duced gain. This configuration was selected for detection of satellites in near-equatorial

orbits. The 136-megacycle fine antennas are located adjacent to those of the 108-megacycle

system. The 136-megacycle ambiguity antennas are offset in a hitherto unused portion of

the antenna field. This parallax can be corrected by calibration methods. Stations equipped

for both equatorial and polar tracking on 136 megacycles employ two additional sets of fine

antennas to produce a fan beam with the wide dimension of the fan lying in the east to west

direction. The desired polarization of the antenna system is selected by means of coaxial

switches.

I0.3.5 RANGE AND RANGE-RATE TRACKING SYSTEM

The Goddard Range and Range Rate System was developed by Motorola for the NASA Goddard

Space Flight Center (Reference 10-3). The contract was awarded in January, 1962

(Reference 10-4). The three mobile ground stations now in operation are tracking the IMP

satellite (VHF) and will be used to track the EGO and POGO satellites (S-Band) (Refer-

ence 10-5).
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The primary function of the R&RR system is the rapid orbital (or trajectory) determination

of spaceborne vehicles. The principle is based on precise measurements of range, range

rate, and angle. The system is especially useful for highly elliptical orbits where "angle

only" systems suffer from the disadvantages that, for a given angular error, the position

error increases with distance (Reference 10-3).

Range is determined by employing ranging sidetones in which the pha_ cleL_y is directly

proportional to the two-way range between the ground station and the satellite. Range rate

is determined by measuring received Doppler cycles per unit time, representing the aver-

age velocity over the measuring interval. Angle measurements are obtained from shaft

encoders mounted on the ground antenna. The system is capable of measurements with an

instrumentation* precision of +_ 15 meters in range and +0.1 degrees in pointing angle**.

The system features short acquisition times, so that the signal from a satellite making a

low-altitude perigee pass can be acquired in less than ten seconds (Reference 10-6).

Two basic operating modes are possible for the ground equipments: S-Band or VHF. The

S-Band mode offers faster accuracy, since up to three ground stations can be operated sim-

ultaneously with the same transponder. Also, the higher carrier frequency allows a more

accurate Doppler measurement. The VHF capability is designed to be utilized by small

satellites which are unable to tolerate the size and weight of the S-Band transponder. Only

single-station operation is available at VHF. If desired, the VHF ground receiving equip-

ment can be used as an acquisition aid when operating with the S-Band system.

Although the present system includes only the tracking function, it can be expanded to pre-

sent an integrated approach to the solution of the tracking, command, and telemetry

requirements of space vehicles.

* The uncertainty in the propagation velocity of electromagnetic waves is about 1:106 and

must be added to this instrumentation error to yield the total error.

** At ranges out to 100,000 kilometers using the S-Band system. The VHF is almost as

accurate, but requires a longer period of time to achieve the accuracy noted.
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All the R&RR ground station equipmentis mountedin vanswhich can be airlifted (Refer-

ence 10-7). The ground stations consist of: a transmitter van, with both VHF and S-Band

one or ten-kilowatt transmitters; a receiver van, containing VHF andS-Band receivers,

ranging andtiming equipment, antennacontrol equipment, and special test equipment; an

S-Band antennawith separate 14-foot receive andtransmit dishes (33 to 35db gain); and a

28by 28-foot VHF array consisting of 72 cavity-backed slots (19 to 20 dbgain). A typical

R&RR ground station is depicted in Figure 10-2 (Reference 10-8).

10.3.6 STADAN COMMAND SYSTEM

The early NASA satellites employed elementary tone-actuated command systems. The

Vanguard satellite required a single tone modulation of the command carrier; later satellite

command systems utilized as many as seven tones. However, all of the satellites using

these simple tone systems have been commanded repeatedly by interfering transmissions

originating in all parts of the world. The immunity of these simple tone command systems

to false command by extraneous signals is very poor.

Furthermore, the simple tone system required unique tones in order to prevent accidental

command by a transmission intended for another satellite. Due to the limited RF spectrum

available for command transmissions, it is not possible to assign unique tones to each satel-

lite and thereby provide protection against accidental command. Because of the suscepti-

bility of interfering signals and accidental command, simple tone-command systems are no

longer recommended for satellites (Reference 10-9).

In order to provide high rejection of unwanted signals, a larger number of commands, a

greater number of unique addresses for different satellites, and reliable reception of the

correct command, a tone-digital command system for on-off commands was developed by

Goddard Space Flight Center (GSFC).

Basically this system utilizes a four-state signal (sync, 1, 0, blank), pulse-duration mod-

ulated (PDM) with constant bit-ratio coding and repetitive word formating. A series of five
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words (each consisting of eight bits), together with one synchronization signal and one blank

period, is sent for each command. The series generally consists of a unique address word

sent twice followed by an execute word sent three times. The receipt of one correct

address word and one valid execute word in the same series of five words is sufficient to

effect a command. This redundancy increases the probability of receiving the correct com-

mand when the signal is weak or when interference is present.

The technique used for error detection and rejection of interfering signals consists of making

the code words from a known number of zeros and ones. The address command word con-

sists of a combination of two ones and six zeros, or of six ones and two zeros. The execute

command word always contains a combination of four ones and four zeros. This fixed four-

out-of-eight bit coding provides a means of detecting all odd bit errors and 43 percent of all

two-bit errors. To further decrease the possibility of spurious commanding, no address or

execute word may be decoded unless a sync pulse has been detected, and once the address

has been detected, a valid execute word must be read within the time duration of the five-

word series or it will not be detected.

In a typical tone-digital command message, the coded PDM command amplitude-modulates

an audio subcarrier (tone). The coding system described above provides 56 unique address

command words, thus permitting 56 satellites to use the same tone:

8 8_2C = 2 2! 6! - 56. (1)

Thirty tones are available for use in this system, lying in the band from 1,025 to 11,024

cycles per second. The total number of satellites which can be handled with this system is

thus 56 X 30 = 1680.

The 4 X 4 execute command word format provides 70 different commands:

8 8_

C4 = 4! (8-4)! - 70 . (2)
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Since most satellites do not require so many commands, a provision has been made in the

ground station design to use six-bit words instead of the eight-bit words described above.

With the six-bit words, the address command word has two ones and four zeros or four

ones and two zeros, permitting

6_2C = 2 2! (6-2)! = 30 (3)

satellites to use the same tone. The six-bit execute command has three ones and three

zeros. This format provides 20 commands:

6 6!

C3 = 3! (6-3)! = 20 • (4)

The Goddard tone-digital command system provides unique command messages for a very

large number of satellites. Tests on this system have demonstrated that it has much greater

immunity against interfering signals than the simple tone systems do. NASA recommends

that all satellites requiring simple on-off commands use the Goddard tone-digital command

system. The command consoles at the STADAN sites are designed to generate the tone-

digital command message.

More details on this and other aspects of the STADAN Command System are contained in

References 10-1, 10-10, and 10-11, and are summarized in Appendix M of this report.

i0.4 GROUND STATION SELECTION

i0.4.1 GENERAL APPROACH

Communications considerations with respect to orbit selection were discussed briefly in

Section 3.4. As mentioned there, it would be desirable from a data handling standpoint to

minimize the number of ground stations required for receiving the data. On the other hand,

spacecraft weight restrictions will limit the amount of on-board storage capacity to only one
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or two orbits of data, depending upon the orbital period*. Accordingly, it is desirable to

select those few ground stations which have the highest probability of seeing the satellite on

a typical pass at an elevation angle at least 15 degrees above the horizontal.

Table 10-3 lists the values of the pertinent orbital parameters for the three orbits under

consideration.

Table 10-3. Values of Pertinent Orbital Parameters

Type of Orbit Apogee Perigee Inclination Period

(NM) (NM) (Degrees)

I. Circular 1,000 1,000 101.84 124 min

U. Elliptical 25,000 200 45 14 hrs

III. Circular 325 325 30 97 min

Figures 10-3, 10-4 and 10-5 show the ground traces for the two circular orbits during the

first 24 hours after injection**. Superimposed on these traces are the coverage circles

for appropriate ground stations, within which the line-of-sight to the satellite is at least

15 degrees above the horizon.

Figure 10-6 shows the ground trace during the first 40 hours for the highly elliptical

orbit**. Slant ranges at the 15 degree elevation angle limits and total line-of-sight times

are indicated. (Coverage circles would have no significance for the highly elliptical orbit,

since the altitude is continuously changing. ) These figures have been used as an aid in se-

lecting suitable ground stations for use with the three orbits. Tentative recommendations

are summarized in the following three sections.

* Storage equipment is becoming lighter with time. The increasing use of such techniques

as thin-film circuits may lessen the severity of the data storage problem over the next

few years.

** These data were obtained by digital computer simulation.
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10.4.2 1000-NAUTICAL MILE CIRCULAR ORBIT

As shown in Figures 10-3 and 10-4, and discussed in Section 3.4 {Figure 3-23), a satellite

in a 1000-nautical mile modified sun-synchronous orbit has ten minutes or more line-of-

sight time at the Fairbanks ground station on more than half the orbits. Thus, Fairbanks

appears quite attractive. However, the outages will occur in gaps. The satellite will be

visible for three or four orbits in sequence and then will not be visible for the next three

or four orbits. It therefore appears desirable to employ a second ground station displaced

about 90 degrees in longitude from Fairbanks, in order to reduce the on-board storage

requirement. St. Johns, Newfoundland, appears suitable for this purpose; if it is utilized

only one or two orbits of storage capacity will be required.

10.4.3 HIGHLY ELLIPTICAL ORBIT

As shown in Figure 10-5, the perigee for this orbit lies in the Northern Hemisphere and

will occur over the Continental United States about once every three orbits.

The decision must be made whether to read out the stored data at a fast rate near perigee,

or at a much slower rate when closer to apogee. In Section 10.6 it will be shown that it is

more efficient from a transmitter power standpoint to transmit rapidly at perigee. This

also has the advantage of committing the ground station for a shorter period of time. How-

ever, the risk of losing one or two complete orbits of data must be further assessed.

For perigee read-out, Mojave, California, St. Johns, Newfoundland, and Winkfield,

England, appear to be the three most promising ground stations.

For read-out near apogee, Woomera, Australia, and Johannesburg, South Africa, appear

suitable.
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10.4.4 325-NAUTICAL MILE CIRCULAR ORBIT

This low-altitude, low-inclination orbit suits the Minitrack Network very well, in that

every orbit passes through the coverage circles along the 75th meridian (see Figure 10-6).

However, it would be desirable to limit the number of stations employed. It appears that

using the following four stations will permit data read-out on nearly every orbit:

Fort Myers, Florida

Santiago, Chile

Lima, Peru

Quito, Ecuador.

Due to the low orbital altitude, the maximum time in view of one of these ground stations

is about seven minutes. Therefore, a reasonably safe solution would be to plan on two or

three minutes of available read-out time and provide capacity for storing two full orbits of

data.

10.5 DETERMINATION OF SLANT RANGE AND DOPPLER CHARACTERISTICS

10.5.1 CIRCULAR ORBITS

10.5.1.1 Background

The purpose of this section is to present a unified approach to the determination of maxi-

mum slant range, Doppler frequency, and time rate-of-change of Doppler frequency as

applied to communication with satellites in circular earth orbits. Graphical results are

presented for all altitudes up to synchronous. Section 10.5.2 extends this analysis to the

case of elliptical orbits.

In a communication link having a relative velocity along the line joining the transmitter and

the receiver, the frequency of the signal arriving at the receiver is shifted from what it
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would have been if there were no motion. This is known as the Doppler effect (first ex-

plainAd by C• Doppler in 1842 for the optical case)• If the transmitter is in motion toward

the receiver, the received frequency is higher than when the transmitter is stationary; but,

if the transmitter is receding, the signal arriving at the receiver is of lower frequency than

when the transmitter is at rest. Similar changes occur if the receiver is in motion•

Neglecting relativistic clock effects*, the Doppler effect due to a velocity, v, along the
!

transmission path is a frequency shift of the carrier, fc' to fc given by:

f' = f (l+v/c)
C C

-f + fdC --

(5)

where c is the velocity of light and fd is the Doppler frequency, given by:

fd = (v/c) fc (6)

The rate of Doppler change can be obtained by differentiating Equation 6 to yield:

fd = (v/C) fc ' (7)

The communications receiver must be designed to accommodate the maximum Doppler

shift (both plus and minus). This can be done either by increasing the receiver bandwidth

sufficiently or by employing a tracking filter or phase-lock loop to follow the changing fre-

quency. The latter technique improves the signal-to-noise ratio, since it permits the use

of a narrower equivalent noise bandwidth; dependent only on the rate of change of

Doppler f d and not on fd itself. However, in this technique the total frequency range over

which the receiver must be able to sweep during acquisition is determined by the amount of

the Doppler frequency shift (plus a small amount for oscillator instability and safety

margin)•

* Negligible at velocities appreciably less than that of light•
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Equations 6 and 7 indicate that the first step will be to find v and v along the transmission

path. From these values the Doppler and Doppler rate may then be calculated.

The satellite will be taken to be in a circular orbit at altitude h. Rotation of the earth will

be neglected. * The geometry is shown in Figure 10-7.

_Y

SATELLITE

R ° -- R e +h -'

Figure 10-7. Orbital Geometry and Notation

10.5.1.2 Slant Range

The following relationships are obtained from Figure 10-7:

0 = cos R +h cos 5 -5 (8)
e

(_ = 0 + 6 (9)

fl = 90 °-_+ 5) (10)

*The effect of earth rotation is negligible for altitudes significantly below synchronous and
for orbits with large inclinations.
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s =R sin8 sin8
e sin_ - R • (ii)e cos @+ 5)

Equations 8, 10, and 11 have been plotted versus orbital altitude, h, and minimum elevation

angle, 5, in Figures 10-8, 10-9, and 10-10, respectively.

i0.5. i. 3 Orbital Period

Kepler's third law of planetary motion states that the square of the period of revolution of a

planet is proportional to the cube of the major axis of its orbit.

The period (neglecting the earth's oblateness) is thus given by (Reference 10-12):

3/2
2_R

p _ o - 2 _ R 3/2/UI/2 (12)

where

R = orbital radius = R + h
o e

= universal gravitational constant

M = mass of the earth

=TM •

Substitution of appropriate values into Equation 12 yields:

P = 6. 987 x 10 -6 (h + 3440) 3/2 sidereal hours* (13)

where h is in nautical miles, for circular orbits. This has been plotted in Figure 10-11.

*One sidereal hour = 0. 99727 mean solar hours.
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Figure 10-10. Maximum Slant Range vs. Orbital Altitude at Elevation Angle 6
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10.5.1.4 Range Rate

It can be seen from Figure 10-7 that the square of the slant range is given by:

s2 R 2 2= + R -2R R cos0
e o e o

(14)

where

e = Vot/R ° (15)

and v is the orbital velocity, given by:
o

Vo =__o ft/sec
(16)

where

= 1.407 x 10-6_3/sec 2.

Equation 16 has been plotted in Figure 10-12,

Substitution of Equation 15 into Equation 14 yields:

s 2 R 2 2= +R -2R
e o e

Vt
O

R cos_
o R

0

(17)

Differentiation of Equation 17 with respect to time yields the range rate:

v R
o e

s - sin 8 (18)
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This range rate is zero when 0 = 0, i.e., directly overhead, and is clearly a maximum on

the horizon.

The value of e at the minimum elevation angle 5 is given by Equation 8. Substitution of

Equation 11 into Equation 18 yields:

= v cos ({}+ 6) (19}
max o

whence, from Equation 8:

R
e

s = v
max o R'- cos b. (20)

O

10.5.1.5 R.ange Acceleration

The rate of change of range rate /nay be obtained by differentiating Equation 18 with respect

to time. This yields:

.. v R -2
S _- O e cos 8- . (21)

RS
O

At a given satellite altitude, the three quantities in Equation 21 which vary with satellite

position in orbit are 0, s, and s; all of which pass through their minimum values when the

satellite is overhead:

e=0

_=0

s=h.
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Therefore, _" reaches its maximum value when the satellite is overhead, and Equation 21

shows:

2
v R _R

_. _ o e_ e (22)
max h R 2

o hR
O

where v is given by Equation 16.
O

10.5.1.6 Doppler Characteristics

Substitution of s for v in Equation 6 yields an expression for the maximum doppler shift
max

as a function of the minimum elevation angle 5 :

f . (23)
C

This has been plotted versus orbital altitude, h, in Figure 10-13•

Similarly, substitution of s"
max

rate of change of Doppler:

for v in Equation 7 yields an expression for the maximum

fd

max

I v2R 1

= 0 e f .
chR c

o

(24)

This has been plotted versus orbital altitude, h, in Figure 10-14.
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10.5.2 ELLIPTICAL ORBITS

10.5.2.1 Background

Section 10.5.1 presented a derivation of the slant range and Doppler characteristics for

earth satellites in circular orbits. The purpose of this section is to extend that analysis to

the case of elliptical orbits.

The same expressions apply for the slant range as in the case of circular orbits. Moreover,

as will be shown in Section 10.5.2.2, the expression for the orbital period of a satellite

in a circular orbit is valid for an elliptical orbit as well, if the arithmetic mean of the

apogee and perigee altitudes is used in place of the circular orbital altitude.

In order to extend the previous analysis to the case of elliptical orbits, it remains only to

determine the maximum slant range rate and acceleration for a satellite in an elliptical

orbit.

The satellite will be taken to be in an elliptical orbit having one focus at the center of the

earth, as shown in Figure 10-15. Rotation of the earth will be neglected.

The radial distance, R , from the center of the earth to the satellite may be expressed as
o

a function of the true anomaly, d, (angle measured from perigee) by:

a(1 - e 2)
R = (25)o 1 + e cos d

where e is the eccentricity of the ellipse, defined by:

e - _/1 - .(b/a) 2 (26)
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Figure 10-15. Orbital Geometry and Notation

Evaluation of Equation 25 at perigee with subsequent algebraic manipulations allows the

eccentricity, e, to be determined from the perigee and apogee altitudes as:

h -h

a P . (27)
e - l_- + h + 2R

a p e

The velocity of the satellite as it travels in orbit is given by:

v = p - -- . (28)
o a

As the radial distance, R , increases, the velocity decreases, and vice versa.o

maximum velocity occurs at perigee, and the minimum velocity at apogee.

The
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10.5.2.2 Orbital Period

Kepler's third law of planetary motion states that the square of the period of revolution of a

planet is proportional to the cube of its semi-major axis. The period is given by (Reference

10-12) :

2 _"a 3/2
T =-

1.2 (29)

where

a = semi-major axis

= earth gravitational constant = _ M.

Note that this is identical to the expression for the period in a circular orbit (see Equation

12) if the semi-major axis, a, is substituted for the circular orbital radius. The period

depends only on the semi-major axis and is independent of the eccentricity.

The semi-major axis is given by:

a = Re + 1/2 (hp + h a) (30)

where

h
P

h
a

= perigee altitude

= apogee altitude.

Thus, the period for the elliptical orbit may be obtained from:

P = 6.987 x 10 -6 (h + 3440) 3/2 sidereal hours,

and Figure 10-11 may be used for elliptical orbits as well as circular.

(31)
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10.5.2.3 Maximum Range Rate

In order to determine the point of maximum Doppler, a straightforward attempt to set an

expression for the derivative of the slant range rate equal to zero results in a formidable

eighth-order equation in R . However, for reasonably low perigee altitudes, (h <<Re},o P

physical reasoning indicates that the maximum (visible) slant range rate occurs when

perigee appears at the ground station's minimum elevation angle 5, as shown in Figure

10-16.

Vp

SATELLITE

Figure 10-16. Point of Maximum Visible Slant Range Rate

At this point the perigee velocity, Vp, is normal to the R °

10-16:

vector, and from Figure

s = v cos (0 + 6)
max p

(33)
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where:

(34)

Application of the law of sines permits the elimination of 0 from Equation 33 yielding:

R
---- V e

max P _-- cos 5. (35)
P

That is, the same expression for s as in the case of circular orbits may be used if
max

v is substituted for v and R is substituted for R .
p o p o

10.5.2.4 Range Acceleration

A rigorous determination of the point of occurrence and the magnitude of the maximum

range acceleration is even more involved than the range rate analysis. Heuristically one

might reason that the maximum range acceleration will occur when the satellite is at

perigee and directly above the station, analogous to the case of the circular orbit. * This

particular situation is mathematically tractable, and an analysis is presented in this section.

The situation is shown in Figure 10-17. The angle d is identical to the true anomaly,

because the ground station is directly beneath perigee.

* This is subject to question, and a thorough analysis should be undertaken before specify-

ing a minimum tracking filter bandwidth for use with satellites in elliptical orbits.
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SATELLITE

Figure 10-17. Situation Near Perigee

The slant range may be obtained from:

2 = R2 R 2s + - 2 R R cos _ .
e o e o

(3(;)

Implicit differentiation yields:

ss = R f_- R i_ eosc_+_R R sind .
0 0 e o e o

(37)

A second differentiation then yields:

.2
s + ss = £t2 + R £t- R

0 0 0 e
cos_ + _R R sind+ _R I_ sin_

O e o e o
(3S)

+ _2R R eos_ + _" R R sind •
e 0 e 0
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At perigee, the following values hold:

ft = 0 R = h +R
P P p e

s = h 1_ = 0
P P P

• R2s =o "R
p p e p

(39)

Substitution of these values into Equation 38 yields:

h "s" = (% - Re) R + R R _2p p p e p p (40)

whence,

tt R R "¢12
-. e e p p

-- +

p R 2 h P
P

(41)

The next step is to calculate -d2.
P

This may be obtained from the principle of conservation of angular momentum (Reference

10-12):

R 2 "'_ = constant = R v (42)
o p p

whence,

= _.p__ 2 1

O

(43)
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P R2
P

(44)

R 2 R + R a
p P

2_A

R 3
P

R
a

(Rp + Ra)

2___

R 3
P

(i + e} a

(i - e)a + (1 + e)a

R 3
P

2

•_2 = _(l+e)
_p R 3

P

(45)

Substitution of Equation 45 into Equation 41 now yields:

R R D (1 + e)
"s" e e p-- 4-

P R 2 R 3 h
P P P

(46)

which may be reduced to *.

_" =
P R 2 h

P P

(47)

* Note that for the special case of circular orbits, (e=o), this expression reduces to

Equation 22.
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i0.5.2.5 Doppler Characteristics

Substitution of s as given by Equation 35, for v in Equation 6 yields an expression formax'

the maximum Doppler shift as a function of the apogee and perigee altitudes and the

minimum elevation angle _ :

j 0)max \% cos
(48)

where the perigee velocity Vp is given by Equation 34.

Equation 48 has been plotted in Figure 10-18 for apogee altitudes of 1000 to 100,000

nautical miles and perigee altitudes of 100, 200, 300, and 400 nautical miles.

Substitution of S•p, as given by Equation 47, for ;¢ in Equation 7 yields an expression for

the time rate of change of Doppler frequency when the satellite is overhead and at perigee*:

_d +eR )
(R e p

R 2 h c
P P

f • (49)
C

This has been plotted in Figure 10-19 for apogee altitudes of 1000 to 100,000 nautical

miles and perigee altitudes of 100, 150, 200, 300, and 400 nautical miles.

Figure 10-19 shows that "f, at perigee is a much stronger function of h than it is of h o

(1 p a

Indeed, it varies approximately as 1/hp, while a factor of 100 change in haalters fd by less

than a factor of two.

* As noted in Section 10.5.2.4, it has not been proven that these circumstances bring about

the maximum fd"
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10.6 ANALYSIS OF TELEMETRY LINK

10.6.1 BACKGROUND

Satellite orbital characteristics and Minitrack telemetry ground station capabilities have

been established in the preceding sections of this report. Using these, it is now possible

to determine the sideband power requirements of the data and the carrier power require-

ments for tracking and acquisition, using appropriate modulation techniques.

As reported in a recent technology review (Reference 10-13), the trend in aerospace

telemetry still points to pulse code modulation (PCM), even though it is becoming clear

that pulse frequency modulation (PFM) will continue to play an important role. Both are

analyzed in this section.

Briefly, in a PCM system the sensor output voltages are first sampled and quantized into

discrete amplitude levels. Each of these discrete levels is then described by a unique

code word comprised of binary elements which subsequently modulate a carrier or sub-

carrier.

Assuming that the analog-to-digital (A/D) encoder can quantize the signals to within + one-

half a quantum step, the accuracy of the quantization may be expressed by:

E = + 1/2 (l/L) (50)

= +(1/2)n+ 1

where n is the number of binary digits (bits) in the code, and L is the number of

quantization levels, given by:

L = 2 n • (51)
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This yields the accuracies shownin Table 10-4.

Table 10-4. PCM Quantization Error

Number of Binary Digits, n Quantization Accuracy, E

4 + (1/2)5 "-- + 3.07o

5 + (1/2)6 + 1.57o

6 +(1/2) 7 - + 0.8%

7 +(1/2) 8 - +0.47O

8 + (1/2)9 "= +0.2%

Therefore, a + 1 percent quantization accuracy requirement will require six-bit encoding.

To realize the full performance advantage of six-bit PCM, the received S/N ratio should
-5 -6

be high enough to maintain the bit error probability between 10 and 10 At higher

error rates than this, the erroneous bits will make a significant contribution to the

inaccuracy of the data, and Table 10-4 will not be applicable.

PFM telemetry is characterized by a train of sequential pulses whose frequencies (tone

bursts) are proportional to the amplitudes of the sampled sensor outputs. A number of

small (less than 200-pound) NASA scientific satellites have utilized PFM telemetry systems

(Reference 10-16}. Size and weight limitations imposed on small satellites have made this

type of modulation/encoding attractive where data requirements are minimal, since the

satellite telemetry equipment required is fairly simple. PFM was used on the Vanguards

and, more recently, on the Scout-launched Explorers. Some future Explorers again will

use this form of telemetry.

The PFM waveform is comprised of a sequence of rectangular pulses, each containing

many cycles of a constant frequency. The information is contained in the frequency of

each of these clipped tone bursts. A typical PFM format is shown in Figure 10-20.
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DATA DA TA DATA

CHANNEL 15 CHANNEL 1 CHANNEL 2

Figure 10-20. Format for a Typical PFM Signal

10.6.2 LINK PARAMETERS

Pertinent parameters for the telemetry link analysis are summarized in Table 10-5, and

the satellite orbital characteristics are summarized in Table 10-6.

Table 10-5. Telemetry Link Parameters

Modulation Techniques Considered:

Encoding Accuracy: 6-bit

Bit Error Probability: 1.0 x 10 -5

Ground Antenna Gain: 19 db

Minimum Elevation Angle: 15 degrees above horizon

Polarization Mismatch Loss:

PCM/PSK, PCM/FSK, PCM/FM

and PFM on subcarriers; non-

coherent PCM/FM

0 db (polarization diversity reception)
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Table 10-5. Telemetry Link Parameters (Cont)

Miscellaneous RF Losses: 3 db

Average Galactic Noise Temperature*:

Antenna Sidelobe Noise Contribution (Reference 10-16):

Preamplifier Noise Temperature (NF = 3.5 db):

Receiving System Noise Temperature:

Corresponding Noise Spectral Density:

1400°K

55°K

365°K

T = 1820°K
e

_196.0 db (w/cps)

Design Margin: 8 db

Table 10-6. Satellite Orbital Characteristics

Characteristics 1000-NM Elliptical 325-NM

Designation of Orbit

Maximum Slant Range - nautical miles

Maximum Doppler - cps

Doppler Rate - cps/sec

I H HI

1950 27,800 830

+2340 +4370 +3070

10.6 125 46.2

* The galactic noise level varies considerably across the sky. See Ko (Reference 10-14)

for typical contour maps. Hogg and Mumford (Reference 10-15) have derived an
empirical relationship:

T _ 290 k2 degrees K
g

for the average galactic noise temperature, where )_ is the wavelength in meters. At 136

megacycles, this yields T _ 1400°K.
g
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10.6.3 AVAILABLE SIGNAL POWER

The calculation of the signal power received on earth per watt of effective radiated power

(ERP)* from the satellite is shown in Table 10-7.

Table 10-7. Telemetry Link Received Power Calculation

Effective Radiated Power (one watt)

Free-space Attenuation (s NM, 136 mc)

Ground Antenna Gain

Miscellaneous RF Losses

+ 0. 0 dbw

-20 log s -80.4 db

+19.0 db

- 3.0db

-20 log s -64.4 dbw

10.6.4 REQUIRED SIGNAL POWER

In the analysis of this section, it will be assumed that synchronous detection is performed

on the carrier by ground station tracking filters, and that the data are located on sub-

carriers. The modulation techniques can then be compared on the basis of their respec-

tive subcarrier power requirements, which are not affected by Doppler characteristics,

oscillator instability, etc.

i

10.6.4.1 Theoretically Ideal System

For the theoretically ideal system the data rate is equal to the channel capacity given by

Shannon's fundamental theorem for the noisy channel:

C = B log 2 (1+ S/N) bits/sec, (52)

* ERP is the product of transmitter output power and transmitting antenna gain.
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where B is the bandwidth of the channel. For wide bandwidths and low received S/N

ratios, this reduces to:

C = B (S/N) log 2 e

S

= N/B l°g2 e

= 1.44 S/(N/B) bits/see; (53)

which yields

watts
S/C = ST = 0.695 N/B bit/see

0. 695 N/B joules/bit; (54)

whence

E/N = 0.695 = -1.6 db (55)
O

where E is the signal energy per bit, and N is the noise spectral density. This repre-
o

sents the absolute minimum received energy required per bit of data. * However, it

would require an infinite encoding time delay (hence, infinite on-board storage) and no

suitable code has yet been discovered.

i0.6.4.2 PCM/PSK

The most efficient modulation technique for uncoded binary data in the presence of addi-

tive white Gaussian noise is phase-reversal keying of the carrier, resulting in a DSB

(SC)** spectrum.

* A vanishing error probability is inherent also.

** Double sideband, suppressed carrier
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The performance of such systems has been analyzed by Lawton (Reference 10-17), Reiger

(Reference 10-18), and others, and the results are well known. For coherent PSK, the

bit error probability has been shown to be:

P
e = _ - er 2 N O

(56)

where E is the signal energy received per symbol, and p is the finite time correlation

coefficient of the two symbol waveforms. This has been plotted in Figure 10-21.

In order to demodulate the received signal, a synchronous receiver is required (in this

case at the subcarrier frequency), together with a reset integrator (matched filter) in its

output.

-5
For a 1.0 x 10" bit error probability Figure 10-21 shows that a value of E/N = 9.6 db

' O

is required. This is 11.2 db inferior to Shannon's ideal, and has been plotted as such in

Figure 10-26.

i0.6.4.3 PCM/FSK

In non-coherent FSK detection the received envelopes are examined, and the frequency

channel having the larger envelope (signal plus noise) is considered the more likely to

contain the signal. It has been shown (References 10-17, 10-18) that the error probability

for non-coherent FSK is:

-E/2N (57)P = 1/2 e o .
e

The difference between coherent PSK and non-coherent FSK is about 4 db for low error

probabilities (Reference 10-19), and has been so plotted in Figure 10-26.
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Figure 10-21. Probability of Bit Error vs. Ratio of Bit Energy to

Noise Power Density for Coherent PSK
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10.6.4.4 PCM/FM

The IRIG Standards (Reference 10-20) preclude the use of PCM/FSK in that they require a

low-pass filter to precede the transmitter modulator, with its three-db cutoff frequency

equal to one-half the nominal bit rate. This is known as PCM/FM. This minimizes the

power in the higher order sidebands and thus assists in RF spectrum conversations.

Moreover, the standards recommend an IF bandwidth between 1.5 and 3.0 times the bit

rate, and a S/N ratio in the IF bandwidth of 13 db for P = 10 -5. Thus:
e

S S ST

N 1.5NoBIF 1.5N °
- 13 db = 20, (58)

whence

E
-- = 30 = 14.8 db. (59)
N

O

This is about 1.2 db less efficient than PCM/FSK, and has been so plotted in Figure 10-26.

10.6.4.5 Typical Improvement Afforded PCM by Error Correction Coding

Various coding techniques can be employed to take advantage of Shannon's channel capacity

theorem and thereby reduce the transmitter power for the same information rate by

increasing the channel bandwidth. The basic coding problem, of course, is to approach

the Shannon channel capacity limit as closely as possible without requiring excessive

complexity in the implementation.

In the digital encoding process, r redundant digits are added to the m information digits

to form an m + r digit code word. The received code word together with additive noise

enters the decoder, where detection decisions are made on a digit-by-digit basis, and the

error correction is performed by logic circuits.
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An alternate method of processing the received code word employs word correlation,

where decisions are made on a word basis, and the error correction is implicit in the

maximum likelihood detector which decides which word was sent. It is well known that

correlation detection is optimum in a Gaussian noise environment, but the receiving

equipment becomes unduly complex for all but relatively weak codes.

Error correction codes range from the least redundant Wagner codes, where one redun-

dant digit is added to a block of information digits, to the most redundant orthogonal codes,

where 2 m - m redundant digits are added to a block of m information digits.

For a given block of m information digits, the greatest increase in transmission efficiency

is obtained by using a highly redundant code, such as a maximal length sequence, ortho-

gonal, or bi-orthogonal code, together with correlation detection at the receiver. How-

ever, there are several practical drawbacks to this. First, the ratio of total bandwidth to

information bandwidth becomes extremely large. For example, the maximal sequence

code with 20 information bits per code word has a code word length of 220 - 1 digits.

This means that about one megacycle of bandwidth would be required to transmit 20 bits

per second of information. Although this is theoretically feasible, practical considera-

tions such as receiver thresholds and synchronization requirements ordinarily rule out

such a large bandwidth expansion.

Furthermore, correlation detection requires that an incoming code word be compared

with all possible code words which could have been transmitted. A maximal length

sequence code having 20 information bits per code word would result in 220 possible

code words. This would require 220 - 1 (slightly over one million) comparisons to be

made upon receipt of a code word which would be rather impractical even at very low

data rates.

To keep the bandwidth expansion small while obtaining a significant increase in data

transmission rate requires the use of a medium redundancy code with a relatively large

number of information digits per word. This usually precludes the use of correlation
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detection. Digital decoding techniques are available, however, which increase in complex-

ity only linearly with code length so that very powerful, low-redundancy codes can be

implemented with relative ease.

Relatively short codes (10 to 50 information bits) of moderate redundancy (40 to 50 percent)

are available (Reference 10-21) which can reduce bit error rates by factors of 10 to 400, or

equivalently, permit one to three-db reductions in transmitter power when the coded sys-
-6

tem bit error rate is 10 (in the presence of Gaussian noise).

A typical code which might be used in such an application is the (73,45) Bose-Chaudhuri

code. This code has a word length of 73 bits, 45 of which are information bits. It is a

four-error correcting/five-error detecting shift-register code which can be readily decoded.

It has the capability of correcting a relatively large number of error patterns of weight

greater than four, in addition to the correction of all error patterns of weight four and less.

Figure 10-22 {Reference 10-21) shows three curves for bit error probabilities of interest

in the evaluation of the effectiveness of the (73,45) code in reducing errors caused by

Gaussian noise. {These data were originally obtained by simulation on an IBM 7090

computer. ) The graphs show that the advantage with simple decoding of the (73,45) code
-3

exceeds one-db for output bit error rates less than 10 and exceeds 3.5 db for output bit

error rates less than 10 -7. * At the nominal bit error rate of 10 -5 used for the analysis

of this study, the improvement is about 2.7 db. This can be subtracted directly from the

required signal levels shown in the PCM analyses of the three preceding sections.

10.6.4.6 Pulse Frequency Modulation

Rochelle (References 10-16, 10-22, 10-23) has shown that PFM with quantized frequencies

has the same communication efficiency, in the presence of additive white Gaussian noise,

* Just as in most signal processing techniques, the better the original signal is, the more

improvement possible.
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as a corresponding set of coded binary sequences with an equal number of quantized levels.

PFM is indeed a special binary code taken from a group of many codes which can be made

up of patterns of zeros and ones, so long as the frequencies in the PFM signal are restric-

ted to an integral number of cycles in the pulse. Each pulse can then be considered to

contain a string of binary digits alternating between zero and one. For example, if the

burst frequency were 6.4 kilocycles in a 10-millisecond pulse, there would be the equiva-

lent of 64 zeros alternating with 64 ones.

A number of methods are available to detect the signal in the presence of noise. Among

these the optimum method is, of course, the use of matched filters with maximum likeli-

hood detection. The number of filters employed is a function of the desired encoding

accuracy. For n-bit accuracy in a single channel measurement, L = 2 n filters are

required.

Although the use of matched filters is most desirable, there are many situations inwhich

the use of unmatched filters can greatly reduce ground station implementation complexity

without causing excessive degradation in error rate. It has been found (Reference 10-161

that the use of unmatched filters for PFM signals in which the number of quantized levels

exceeds eight (n = 3) can result in a simplification of the operation of the detection system

over a matched filter set. The unmatched filter set would consist of L contignous band-

pass filters, where L is the number of quantized levels in the signal. *

Viterbi (Reference 10-24) has published curves of error probability as a function of the

ratio E/N . These curves are plotted for both orthogonal and bi-orthogonal codes for
o

various values of n, where n is the number of coded bits. For a PFM system using inte-

gral values of frequency and 128 coherent detectors, the value of n would be seven.

Viterbi's curves can thus be used directly to evaluate a PFM signal. For example,

* As mentioned in Reference 10-23, the use of contiguous bandpass filters allows the

transmission of analog frequencies (rather than discrete frequencies). A discriminator

can then be added to each filter output, permitting improved accuracy under conditions
of higher received S/N ratio.
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Explorer XII used 100filters. If they had beencoherent detectors, n would be log2 100= 6.64.

This is equivalent to a coded binary phase-coherent system with n = 6.64.

Figure 10-23 shows the error-probability curves derived by Rochelle (Reference 10-16)

for the unmatched filter set with maximum-likelihood detection in the presence of

Rayleigh noise (i. e., following an envelope detector}. * The curves were derived in terms

of word error probability, instead of the bit error probability which was used for the PCM

analysis. (This, of course, is natural, since PFM is encoded and decoded word-by-word

instead of bit-by-bit. }

To permit a comparison of the two modulation efficiencies, it is necessary first to determine

what the equivalent word error rate of the PCM word is. This is given by (Reference 10-24}:

n

P (n) = 1 - [i - Pe(b)]_e nPe(b)

(60)

forP (b)<< 1 .
e

Thus, a PCM bit error rate of 10 -5 results in a word error rate of approximately 6 x 10 -5

six-bit words. Therefore, the appropriate E/N to use in the comparison for PFM is that

which will provide a word error rate of 6 x 10 -5. Figure 10-23 shows that this is E/N =
o

4.3 db, which is 5. 9 db inferior to Shannon's ideal and has been so plotted in Figure 10-26.

for

* Under conditions of high S/N ratio, the probability of error with the unmatched filter set

approaches that of the matched filter set.
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10.6.4. 7 Carrier Loop Bandwidth and Power Requirements

A. Loop Bandwidth Requirements for Acquisition

The detection processes analyzed in the preceding sections have all assumed that synchronous

detection is performed on the carrier by the ground station tracking filter. This requires that

the frequency of the incoming signal first be located (acquired}. Then an internally generated

signal at the receiver must be locked in phase with the received carrier and must follow

all further phase variations of the carrier. The capability of a phase-lock loop which will

acquire and track the carrier is described in this section. Its requirements are then

determined from the dynamic and electrical characteristics of the links.

The parameters of interest in the tracking loop are the effective loop noise bandwidth and

the S/N ratio required in that bandwidth, since these parameters determine the amount of

transmitter power required in the carrier. Several factors must be taken into account in

determining the noise bandwidth. These include:

Thermal noise

Phase jitter due to instability of the transmitter and receiver oscillators

Sweep rate for signal acquisition

Doppler rate.

Although it would be desirable to minimize the loop bandwidth in order to minimize the

thermal noise, the last three factors tend to limit the amount of bandwidth reduction which

can be realized.

Acquisition of the incoming signal is accomplished by sweeping the locally generated signal

through the frequency band in which the incoming signal is known to exist. Unless the loop

can respond rapidly to the transient resulting from the coincidence of the two signals, it is

unlikely that it will lock onto the signal. Increasing the loop bandwidth increases the

probability of acquisition.
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In addition to oscillator phase jitter and the sweeping action required for acquisition, the

Doppler rate also limits the minimum loop noise bandwidth. In effect, the Doppler rate

places the same type of re quirement on the loop bandwidth as the acquisition sweep does.

In one case the incoming frequency is changing, while in the other case the locally generated

frequency is changing.

The phase-lock loop considered in this analysis is a basic Type II loop with the addition of

a limiter at the output of the IF section. The Type II loop has been discussed extensively

in the literature, so the theory of its operation will not be covered here. The limiter

provides a gain control function, since the gain of the loop depends upon the amplitude of

the incoming signal. The advantages of limiting have been set forth by Jaffe and Rechtin

(Reference 10-25), and the acquisition characteristics of a Type II loop with limiting in

the presence of noise have been determined by means of a GEESE* simulation of the system,

the results of which have been reported by Frazier and Page (Reference 10-26}.

The results of the GEESE simulation provided an empirical formula for the prediction

of the sweep rate for a 90 percent probability of acquisition on the first sweep:

o)(0
2 (i+$) (61)

where

O

5 =

O

calculated rms output phase jitter

overshoot = exp (-_ _1-_ 2 )

signal suppression factor in limiter

supression factor for which the loop is "matched"

= natural frequency at match point

= loop damping factor (_ _ 1/2)

The calculated rms output phase jitter is given by:

*General Electric Electronic System Evaluator
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2 1/2 rad2o _ (N/S)out (62)

where (N/S)out is the noise-to-signal ratio in the loop noise bandwidth.

is usually allowable for v corresponding to S/N = 7.5 db. *
O

A value of 20 degrees

The signal suppression factor, _ , results from the characteristics of an ideal limiter

in the presence of noise. At the match point _ =
O

The noise bandwidth of the loop, Bn,

, (inrad/sec) by:
n

n 2
B _ (1+4 _ ).
n 4_

(in cps) is related to the natural frequency of the loop,

(63)

B is a minimum when _ = 1/2, where it has the value:
n

B = u_ cps,
n il

(64)

Therefore, at the match point and for the optimum value of damping factor

and a = 0.3 rad, equation 61 becomes:
O

R90
[_-(2.2)(0.3)] [0.9 Bno 2 ]

2 11 (1+0.17)

= 1/2

2
0.111 B , (65)

no

whence

Bno = 3_ R90 cps, (66)

*It has been shown that Equation 62 is only accurate to no better than three db for IF S/N

ratios below -10 db (Reference 10-26). Nevertheless, it is the value used in the empirical

relationship of Equation 61.
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where the sweep rate may be obtained from the sweep bandwidth, B
S,

T :
S

and the sweep duration

R90 = B /T cps/sec. (67)S S

The IF bandwidths available in the Minitrack Mod. I Telemetry Receiver range from ten

kilocycles to one megacycle. Tracking filter loop bandwidths of 2.5, 5, 10, 25, 50 and

100 cps are available. Equation 66 may be solved for the maximum acquisition time (with

90 percent probability):

T = 9B /B 2 (68)
s s no.

This has been plotted in Figure 10-24 for the sweep and loop bandwidths of the Mod. I

receiver.

The necessary sweep bandwidth depends on the amount of frequency uncertainty, which

is the sum of the Doppler uncertainty and the frequency drifts of the oscillators (both

transmitter and receiver). The Doppler shift will be predictable to an increasing

accuracy each orbit. Thus the minimum sweep bandwidth is determined by the frequency

stability. For a stability of 1:105, this represents 2720 kilocycles at 136 megacycles.

A loop bandwidth of 25 cycles per second would permit sweeping this band in 0.65 minutes

(with 90 percent probability of lock). However, if the entire ten kilocycle band must be

swept, 2.4 minutes will be required. Assuming a reasonable a priori knowledge of the

orbit, a 25 cycle per second loop bandwidth appears adequate for acquisition.

B. Loop Bandwidth Requirements for Carrier Tracking

Studies conducted by Motorola (Reference 10-27) have indicated the following formula to be
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reasonable for estimating the minimum loop bandwidth required to track an incoming signal

which is changing frequency at a rate df/dt:

Bn _ 20 _ (df/dt)/c (69)

where a is the actual phase error in degrees.
O

Equation 69 becomes:

If this is taken to be 20 degrees,

Bn _ _7.07 (df/dt) (70)

which is slightly less than that given by Equation 66 for acquisition.

in Figure 10-25 for the range of Doppler rates of interest.

* This has been plotted

The graph indicates that the 25 cycle per second tracking loop bandwidth chosen on the basis

of acquisition time will be adequate for tracking the circular orbits, but to handle the

elliptical orbit at perigee, the loop would have to be opened up to 50 cycles per second.

C. Carrier Power Requirements

The carrier power required will be proportional to the noise bandwidth, B of the loop.
no,

Depending upon the use for which the loop output is to be used (e. g., Doppler tracking,

data demodulation, etc. ), a minimum carrier-to-noise ratio is usually established, below

which the output of the loop becomes too noisy to be useful.

*It is difficult to compare the two empirical relationships, since Equation 70 is based on

20 degrees actual phase error, while Equation 66 is based on 20 degree calculated phase

error,
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For tracking and acquisition it has been assumed that no more than a 20-degree rms phase

error will be allowed, and the C/N ratio must be adequate to provide this. The specifications

on the Eleetrac Phase-Lock Demodulator in use at the STADAN ground stations indicate

that it requires a 9 db C/N ratio for 20 degrees phase error; while the specifications on the

Interstate Tracking Filter indicate that it requires a 12 db C/N ratio. These values will be

used in order that the tracking requirement may be met. They should more than satisfy

the acquisition requirement.

For the assumed receiving system noise temperature of 1820°K and the C/N ratios indicated

above, Table 10-8 shows the minimum carrier power requirements for the tracking filter

and the phase-lock demodulator for each of the loop bandwidths available. * These carrier

levels establish a lower bound on the satellite transmitter power requirement, regardless

of how low the data rate is.

Table 10-8. Carrier Power Requirements for Tracking Filter and PL Demodulator

Loop Bandwidth (cps)

2.5

3

5

10

25

30

50

100

300

Carrier Power Required in dbw (zero margin)

Tracking Filter

-180.0

-177.0

-174.0

-170.0

PL Demodulator

-182.2

-177.0

-172.2

*It should be noted here that the available bandwidths on the Eleetrac PL Demodulator are not

quite the same as those on the tracking filter. The PL Demodulator offers 3, 10, 30, 100 and

300 cps, instead of 2.5, 5, 10, 25, 50, and 100 cps.
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10.6.4.8 Division of Power Between Carrier and Sidebands

In a phase-modulated signal the fraction of the total power which lies in the carrier is:

P
C

PT

= j2 (_) (71)
o

and the fraction of the total power which lies in the first sidebands is

P
S

PT

2
= 2 Jl (¢) (72)

where J = the Bessel function of the first kind of zero order
o

J1 = the Bessel function of the first kind of first order

e9 = the phase modulation index (in radians).

As a slightly conservative estimate it will be assumed that the small fraction of the power

which lies in the higher sidebands is not recovered.

Practical factors in the phase detector usually limit the maximum value of the modulation

index to ¢ < 1.4 radians. This establishes the maximum fraction of the power which can

be put into the sidebands. For reasonably high data rates this limit usually leaves ample

carrier power, since the total power is then determined by the sideband power requirements

of the data. However, at low data rates the carrier power requirements become important,

and the modulation index must be reduced from 1.4 radians in order to provide a better

balance between carrier power and sideband power.

The modulation index restriction thus shows the bounds on the carrier and sideband powers

to be, respectively:
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0.33 _ Pc/PT _ 1.0 (73)

and

0.0 < Ps/PT < O.59.
(74)

The ratios Pc/PT and P /PT are sometimes referred to as the carrier and subcarriers

suppression factors, respectively.

10.6.4.9 Non-Coherent Reception

It is, of course, possible to omit the tracking filter at the ground receiver and feed the

IF signal directly to an FM limiter/discriminator. If simultaneous Doppler tracking of

the carrier frequency is not required (e. g., if a separate tracking beacon is used, or if

it is possible to track while data are not being transmitted), then it is possible to modulate

the carrier directly, using PCM/FM for example. This would eliminate the 0.59 subcarrier

suppression factor and thus offer a saving in useful signal power of 2.3 db. Furthermore,

no time would be required for carrier acquisition, which would be advantageous for short

transmission periods.

However, the characteristics of an FM discriminator require at least a 12 db S/N ratio in

the IF bandwidth in order to be above threshold. The IF bandwidth requirement (in cps)

for the data is between 1.5 and 3.0 times the bit rate, and the minimum IF bandwidth of the

Minitrack Mod. I receiver is 10 kilocycles. Therefore, unless the link has very little

frequency uncertainty (due to Doppler and oscillator instability) and a rather high data rate,

a considerable penalty in detection efficiency is paid by using noncoherent reception.

Nevertheless, as will be shown in Section 10.6.6, there may be applications where non-

coherent reception is advantageous.
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I0.6.4. I0 Comparison of Modulation Techniques

The analysis in the preceding sections has offered a comparison of PCM/PSK, PCM/FSK,

PCM/FM, and PFM on the basis of efficiency. The results are summarized in Table 10-9

and plotted in Figure 10-26.

Table 10-9. Theoretical Comparison of Modulation Efficiencies

-5
For Bit Error Probability = 10

Modulation Technique

PCM/PSK

PCM/FSK

PCM/FM (IRIG Standards)

PCM Saving Possible through (73,45) Bose-Chaudhuri Coding

PFM (64 levels)

Shannon Theoretical Limit

E/N
O

9.6 db

i3.6 db

14.8 db

(2.7 db)

4.3 db

-1. 6 db

PCM/PSK has been shown to be quite efficient and is used for deep space communication.

However, it must be eliminated because it requires a synchronous receiver (at the subcarrier

frequency), and no plans are known for adding these to the existing STADAN ground station

facilities.

PCM/FSK must be eliminated because of spectral incompatibility with IRIG standards.

Although PFM is the most efficient of the four techniques analyzed, it is more extravagant

than PCM/FM in its use of RF spectrum. PFM is based on the use of a set of time-limited

sine functions having orthonormal properties. Rochelle (Reference 10-16) has pointed out

that the smallest allowed separation in frequency between any two members of a set of

orthonormal frequencies is the reciprocalof twice the word length. As a practical example,

a pulsed sine wave of 10-millisecond duration has zeros of its cross-correlation with other
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frequencies at multiples of 50 cycles per second away. Six-bit encoding accuracy requires

26 = 64 tones. A 10-millisecond sampling interval allows 100 samples per second, hence,

600 bits per second. With PFM this requires a bandwidth of 64 x 50 = 3200 cycles per

second. A comparable PCM/FM system would require a bandwidth of only 1.5 x 600 = 900

cycles per second. Thus, for six-bit accuracy it appears that PFM occupies more than

3 1/2 times the bandwidth of PCM/FM. At very low data rates, sucl_ as those used with

small satellites, _is is insignificant, but it becomes increasingly important as the data

rates increase.

Another difficulty with PFM lies in the fact that (in this example} 2n - 1 = 63 filter output

comparisons must be made in each sample period. For sampling periods of 10-milliseconds

duration this requires 6300 comparisons every second. A PCM signal requires only one

comparison per bit, or 600 comparisons per second in this example. Thus the PFM system

(for six-bit accuracy} will require over ten times as many comparisons as the PCM system

does at trie ground station. This poses a synchronization problem and could place an

excessive burden in computation time on the ground stations in a high data rate system.

Since the data rates in this mission may become high, and satellite weight is not a critical

item, PFM will not be recommended at this time.

Such reasoning leaves PCM/FM as the recommended modulation technique for this mission,

with the option of employing a medium redundancy error-correcting code to provide a

2.7-db improvement if it should become necessary.

10.6.5 DETAILED ANALYSIS OF PCM/FM CAPABILITIES

10.6.5.1 PCM/FM/PM Sideband Power Requirements

The calculation of the power required in the data subcarrier channel is shownin Table 10-10.
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Table 10-10. Calculation of Required SidebandPower for PCM/FM/PM

Noise Spectral Density

(T e _ 1820°K)

Subcarrier IF Bandwidth*

(1.5 times bit rate)

Noise in Subcarrier Channel

Required S/N Ratio :

(for P =10 -5 )
e

Required Power in Subcarrier Channel

-196.0 db (w/cps)

+1.8 + 10 log R db (cps)

-194. 2 + 10 log R dbw

+13 db

-181.2 + I0 log R dbw

For a phase modulation index of _b = 1.4 radians, the subcarrier suppression factor is

2
2 J1 (1.4) = 0.59 = -2.3 db. (75)

Therefore the total power required at the receiver (due to the data requirements) is

PR = 10 log R - 178.9 dbw
(plus approx. 8 db margin). (76)

The total power available at the ground receiver is **

PA-- -20 log s - 64.4 dbw per watt ERP (77)

Setting PR + margin = PA now permits a solution for the data rate capability as a function

of range to the satellite:

-20 log s- 64.4 =101ogR- 179.8 +8.0

10 logR=106.5-20 logs

1010R = 4.5 x bits/sec

s2

(78)

(79)

(80)

*Minimum possible. May be further limited by actual subcarrier discriminator in use.
**See Table 10-7.
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per watt ERP, where s is in nautical miles. This has been plotted in Figure 10-27.

10.6.5.2 PCM/FM/PM Carrier Power Requirements

Equation 77 shows the total power available at the ground receiver. Section 10.6.4.8

showed that the maximum carrier suppression factor to be used is

2
J (1.4) =0.33 =-4.8db (81)0

Therefore, adding 4.8 db (plus 8 db margin) to the carrier power requirements given in

Table 10-8 indicates the total power required at the receiver due to the carrier power

requirements. Setting this equal to the available power, PA' (given by Equation 77)

allows a solution for the maximum range to the satellite at which carrier lock can be

maintained. This has been indicated in Figure 10-25 for the 25 and 100 cycles per second

loop noise bandwidths.

For lower data rates the modulation index can be reduced below 1.4 to provide more

carrier power. Moreover, at the higher altitudes the Doppler rate is quite low, so a

narrow tracking loop bandwidth can be employed to reduce the carrier power requirements.

Figure 10-25 provides a convenient working tool for any orbit. It can be used by selecting

the maximum communications distance of the satellite link and then adjusting the ERP

to provide the required data rate.

10.6_5.3 Non-Coherent Reception of PCM/FM

For comparison purposes, non-coherent detection of PCM/FM directly modulating the

carrier* would require at least a 12 db S/N ratio in the predection bandwidth (10 kilo-

cycles or more). Thus the minimum required power (at low data rates) becomes

PR = -196 + 12 + 40 dbw (plus approx. 8 db margin)

-- -136.0 dbw.

*As described in Section 10.6.4.9.

(82)
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The available power is given by Equation77. Equating this to the minimum required power

shows the maximum range (for onewatt ERP) at which non-coherent reception is feasible.

-20 log s - 64.4 = -136.0 dbw (83)

s = 103.6 - 4000 nautical miles (for one watt ERP) (84)max

The data rates available using the 10, 30, and 100-kilocycle predetection bandwidths

for the three orbits under consideration are determined in Table 10-11 and plotted along

with those for other orbits in Figure 10-28. This graph will be used in Section 10.6.6 to

determine the required effective radiated power for non-coherent PCM/FM for the three

orbits. The method involves setting the effective radiated power equal to the square of the ratio

of the maximum communications distance to the threshold range, using the smallest available

receiver bandwidth to the right of the desired data rate.

10.6.6 RESULTS OF TELEMETRY LINK ANALYSIS

The analysis in the preceding sections has offered a comparison of PCM/PSK, PCM/FSK,

PCM/FM, and PFM. The conclusion has been reached that PFM is the most efficient of

the four techniques but for other than low data rates uses excessive bandwidth and may

impose a burden on the ground station demodulators. PCM/PSK was eliminated because of

incompatibility with existing ground receivers, and PCM/FSK was eliminated because of

incompatibility with I_G standards. This left PCM/FM as the recommended modulation

technique for this mission.

Noncoherent reception was shown to be generally inefficient for moderate data rates, so it

is recommended for the circular orbits that the PCM/FM signal be placed on an appropriate

subcarrier which phase modulates the telemetry carrier, using a modulation index not to

exceed 1.4. This has the added advantage of allowing simultaneous Doppler tracking by

means of the telemetry carrier.
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Table 10-11o Determination of Noncoherent PCM/FM Capabilities

ITEM

Maximum Doppler (cps)

Oscillator Instability (10-5) a-

Frequency Uncertainty (cps)

Bandwidth B = 10 kc

Available for B = 30 kc

Data (1.5 R} B = 100 kc

Available B = 10 kc

Data Rate (R) B = 30 kc
(bits/second) B = 100 kc

Threshold B = 10 kc

Power B = 30 kc

Requirement B = 100 kc

Maximum Range B = 10 ke

for one watt ERP B = 30 kc

(as in Equation 84) B = 100 kc

ORBIT

I

(1000 NM)

_2340

_1360

7400

2600

22,600

92,600

1740

15,100

62,000

II

(elliptical)

±4370

±1360

11,460

0

18,540

88,540

0

12,500

59,000

-136.0 dbw
-131.2 dbw

-126.0 dbw

4000 NM

2300NM

1260 NM

III

(325 NM)

_3070

±1360

8860

1140

21,140

91,140

760

14,100

61,000

Maximum Communications Distance (NM)

Effective Radiated

Power Required

(row)
B = 10 kc

B = 30 kc

B = 100 kc

1950

240

720

2400

perigee: 600

68

227

83O

43

129

430

Not_____e

a. This stability may be slightly optimistic if operation over a wide

temperature range is required. Off-the-shelf PM transmitters

typically have 5 X 10 -5 stability over a temperature range of -20 °

to +60°C. However, they provide 5 X 10-6 over a limited temperature

range.
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However, noncoherentreception is attractive for communication from the highly elliptical

orbit at perigee, where the large amount of data recorded during the long orbital period

must be transmitted during a very short line-of-sight time near perigee. This requires a

high data rate and a minimum acquisition time. Since a separate range and range-rate

transponder will probably be used for accurate tracking in the elliptical orbit, no separate

telemetry carrier requirement exists for the tracking function.

It was found that a 25-cycle per second loop bandwidth should be adequate for carrier

tracking in all cases except for the elliptical orbit at perigee, where 50 cycle per second

would be necessary. The 25-cycle per second bandwidth also allows acquisition in less

than one minute, assuming some _a priori knowledge of expected Doppler characteristics.

It was also found that a typical medium redundancy error-correcting code could offer about

2.7 db advantage where the bit error probability is 10 -5 or less. Although entirely feasible,

the modest transmitter power requirements and a low duty cycles do not indicate a strong

requirement for such increased efficiency. Therefore, it is recommended that coding be

held in reserve as a solution in case subsequent plans show a need for a higher data rate or

a reduction in prime power.

Table 10-7 shows the received telemetry power per watt of satellite effective radiated

power. Figure 10-26 shows the sideband power requirements for the modulation techniques

which were analyzed, and Equation 74 indicates that a maximum of 59 percent of the total

transmitter power may be placed in the sidebands. Figure 10-27 has been plotted, using

data from these two graphs. It shows the data rates possible per watt of effective radiated

power, as a function of the range to the satellite.

Comparison of Figure 10-27 with Figure 10-28 shows that for data rates below approximately

2000 bits per second a significant saving in transmitter power is possible by using coherent

carrier demodulation. At higher data rates the frequency uncertainty becomes a smaller

fraction of the receiver IF bandwidth, and the advantage of coherent carrier demodulation

is reduced.
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Using Figures 10-27 and 10-28 in the manner described in Section 10.6.5, the required

effective radiated power for each of the three orbits has been determined and plotted in

Figures 10-29, 10-30, and 10-31 as a function of data rate, for both PCM/FM/PM and non-

coherent PCM/FM.

Once the data rate requirements have been established for each of the three orbits, these

figures may be used to determine the required effective radiated power. The remaining

step will be to make the trade-off of transmitter power versus antenna gain to provide the

required effective radiated power. The antenna gain realizable will be limited by the

actual configuration of the satellite.

At the high data rates to be used in these links, bit synchronization will notbe a problem.

The assignment of one or two words per frame as frame synchronization signals (e. g.,

Barker Words) should provide an adequate basis from which bit synchronization can be

referenced.

10.7 ANALYSIS OF TRACKING LINKS

10.7.1 MINITRACK TRACKING ANALYSIS

Typical calculations for a 136-megacycle Minitrack tracking link are shown in Table 10-12

for one watt of effective radiated power. This tracking sigual may be provided either by a

separate beacon or by the telemetry carrier. The required S/N ratios were taken from

those of the tracking filter listed in Table 10-8.

As described in Section 10.3.4, fixed ground antennas are used for Minitrack tracking.

These are aligned along baselines in both the east-west and north-south direction. The

radiation pattern is fan-shaped, and the polarization is linear and perpendicular to the long

dimension of the antenna. Minimum elevation angles of 52 degrees and 37 degrees, respec-

tively, have been assumed for the "fine" and "ambiguity" antennas, corresponding to the
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1000

100

Non-Coherent PCM
/

1000 - NM orbit

Elevation angle = 15 °

Margin = 8 db

Freq. Stability = 10 -5

10 100 1000 10,000

DATA RATE-BITS/SEC

Figure 10-29. Required Effective Radiated Power vs° Data Rate for Orbit I
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1000

100

<

I

(Y

N 10

325 NM ORBIT
ELEVATION ANGLE = 15 °

MARGIN = 8 db

FREQUENCY STABILITY = 10 .5

-- NON-COHERENT PCM/FM

10 100 1000 10,000

DATA RATE - BITS/SEC

Figure 10-31. Required Effective Radiated Power vs. Data Rate for Orbit HI
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three-db points in the antenna patterns. The slant ranges corresponding to these elevation

angles have been used (Equation Ii), and the specified antenna gains have accordingly been

reduced by three db in the calculations.

Since the ground antennas are linearly polarized, a polarization mismatch loss of three db

has been included. This corresponds to circular polarization on the satellite and linear on

the ground which might be optimistic. If, instead, the wave should arrive at the ground

linearly polarized, there will be no degree of certainty that tracking can be performed

satisfactorily on every pass over a ground station. * Because of this situation, considerable

thought must be given to the placement of the satellite antenna and the orientation technique.

Table 10-12. Typical Minitrack Tracking Link Calculations

Tracking Signal ERP (one watt)

Free-Space Attenuation

(s NM, 136 mc)

Polarization Mismatch

Miscellaneous RF Losses

Ground Antenna Gain

(at -3 db point)

Tracking Signal Available
at Ground Receiver

Threshold Tracking Signal

Design Margin

Tracking Signal Required
at Ground Receiver

Fine

Antenna

+0.0

-20 log s -80.4

- 3.0

-3.0

+12.6

Ambiguity
Antenna

+ 0.0 dbw

-20 log s J80.4 db

-3.0 db

-3.0 db

+ 3.5 db

B
no

-20 log s -73.8 -20 log s -82.9 dbw

Loop Noise Bandwidth

= 25 eps B = 50 cps
no

-170.0 -167.0 dbw

+ 8.0 + 8.0 db

-162.0 -159.0 dbw

* However, the situation is better than it was a few years ago, because all but three of the

Minitrack stations now generate east-west as well as north-south fan beams. Since the

polarization is perpendicular to the long dimension of the antenna, this gives some degree

of polarization diversity, although it will not, of course, handle a vertically polarized wave.
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Equating the available power to the required power (including 8 db margin) allows a solution

for the maximum tracking range (for one watt ERP). For example:

-20 log s - 73.8 = 162.0 dbw

s = 104.4 = 25,000 NM
max

with the fine antenna

(85)

(86)

and

-20 log s -82.9 = -162.0 dbw (87)

s = 103.95 = 8900 NM (88)
max

with the ambiguity antenna

Using Equations 8 and 11, the maximum tracking altitudes corresponding to these slant

ranges have been plotted in Figure 10-32 as a function of tracking signal effective radiated

power for 25 and 50 cycle per second tracking loop bandwidths. Of course, at the higher

orbital altitudes the rate of change of Doppler is lower, and a narrower loop bandwidth can

be used, if the long acquisition time can be tolerated. Figures 10-14, 10-24, and 10-25

should be useful in establishing the minimum tracking loop bandwidth for other orbits.

Figure 10-32 indicates that for Orbit I approximately 27 milliwatts of effective radiated

power will be required, while for Orbit HI about 5 milliwatts of effective radiated power

will be required (using a 25 cps loop bandwidth). Due to the high eccentricity of Orbit II,

a range and range-rate tracking system is recommended. This will be covered in the

next section.

10.7.2 RANGE AND RANGE-RATE TRACKING ANALYSIS

A brief description of the Goddard Range and Range-Rate (R&RR) Tracking System was

given in Section 10.3.5. Link calculations for VHF and S-Band R&RR tracking are shown

in Tables 10-13 and 10-14, respectively.
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Just as in the preceding section, equating the available power to the receiver sensitivity

(plus 8 db margin) allows a solution for the maximum tracking range (for one watt ERP).

The maximum tracking range* has been plotted in Figures 10-33 and 10-34 as a function

of the satellite effective radiated power. Ground-to-satellite link limitations and the point

at which current equipment operates are indicated.

The graphs indicate that the existing VHF equipment should be adequate for tracking the

Orbit II satellite all the way out to its maximum slant range of 27,800 nautical miles.

Table 10-13. VHF R&RR Tracking Link Calculations

Ground-to- Satellite Link (148 mc)

Transmitter Power (10 kw)

Ground Antenna Gain

Free-Space Attenuation (s NM, 148 mc)

Polarization Mismatch Loss

Miscellaneous RF Losses

Satellite Antenna Gain (minimum over more than

90% of the pattern)

Tracking Signal Available at Satellite Receiver-

Transponder Sensitivity (Reference 10-28) : -145.0 dbw

Satellite-to-Ground Link (136 mc)

Tracking Signal ERP (one watt)

Free-Space Attenuation (s NM, 136 me)

Polarizat ion Mismatch

Miscellaneous RF Losses

Ground Antenna Gain

Tracking Signal Available at Ground Receiver:

Ground Receiver Sensitivity (Reference 10-29) :-174.0 dbw

+40.0 dbw

+20.0 db

-20 log s - 81.2 db

- 3.0db

- 3.0db

-i0.0 db

-20 log s -27.2 dbw

+ O. 0 dbw

-20 log s -67.4 db

- 3.0db

- 3.0db

+19.0 db

-20 log s - 80.4 db

*Slant range has been used here rather than orbital altitudes so that the curve will
be more useful with elliptical orbits.
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Figure 10-32. Maximum Orbital Altitude vs. Satellite Effective Radiated

Power for Minitrack Tracking (8 db Margin)
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Table 10-14. S-Band R&RR Tracking Link Calculations

Ground-to Satellite Link (2271 me)

Transmitter Power (10 kw)

Ground Antenna Gain

Free-space Attenuation (s NM, 2271 mc)

Polarization Mismatch Loss

Miscellaneous RF Losses

Satellite Antenna Gain (minimum over more than

90% of the pattern)

Tracking Signal Available at Satellite Receiver:

Transponder Sensitivity (Reference 10-29): -135.0 dbw a-

Satellite-to-Ground link (1705 mc)

Tracking Signal ERP (one watt)

Free-space Attenuation (s NM, 1705 mc)

Polarization Mismatch

Miscellaneous RF Losses

Ground Antenna Gain

Tracking Signal Available at Ground Receiver:

Ground Receiver Sensitivity (Reference 10-29) : -178.0 dbw

-20 log s

+40.0 dbw

+35.0 db

+104.9 db

- 3.0db

- 3.0db

-i0.0 db

-20 log s -45.9 dbw

-20 log s

+ O. 0 dbw

-102.4 db

- 3.0db

- 3.0db

+33.0 db

-20logs -75.4dbw

Note

a. A program is currently underway to improve the transponder sensitivity to -140 dbw

(Reference 10-29).
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Figure 10-33. Maximum Tracking Range vs. Satellite Effective Radiated

Power for VHF Range and Range Rate Tracking (8 db Margin)
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i0.8 ANALYSIS OF COMMAND LINK

A brief description of the STADAN command system was given in Section 10.3.6. More

details are contained in Appendix M.

Table 10-15 shows the calculations for a 150-megacycle STADAN command link. Equating

the available command signal to the receiver sensitivity (plus 8 db margin) allows a solution

for the maximum slant range at which the satellite can be commanded with confidence:

-20 log s-61.3 = 131.0 +8.0 (89)

20 log s = 61.7 (90)

whence,

103.085s = = 1220 NM (91)

Table 10-6 shows that the maximum slant range for Orbit I is 1950 nautical miles; that for

Orbit II is 27,800 nautical miles (at apogee); while that for Orbit HI is 830 nautical

miles. Thus it appears that a command link operating under the assumptions listed in

Table 10-15 would be wholly satisfactory only for Orbit HI. However, there are ways

around this problem for the other two orbits.

Five-kilowatt transmitters (General Electric 4BT91A1) are being installed at all stations

equipped with 40 or 85-foot parabolic antennas. Broadband high-power command antennas

are also being installed, consisting of a disk-on-rod array having a gain of 22.5 db

(Reference 10-1). Thus, by using a five-kilowatt transmitter coupled to one of the new

high-power command antennas, the available power can be increased by 23.5 db. Commands

can then be transmitted with confidence at a slant range out to 18,200 nautical miles.
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Table 10-15. CommandLink Calculations

Transmitter Power (Collins 242G-2, 200watts, AM)

Ground Antenna Gain (YGCl-lA/136-SS)

Free-space Attenuation (s NM, 150mc)

Satellite Antenna Gain (minimum over more than
90%of the pattern)

Polarization Mismatch Loss

Miscellaneous RF Losses

+23.0 dbw

+13.0 db

-20 log s -81.3 db

-10.0 db

- 3.0 db

- 3.0 db

CommandSignal Available at Satellite Receiver -20 log s -61.3 dbw

Receiver Sensitivity (2 microvolts across 50ohms) -131.0 dbw

This modification should serve all three orbits quite satisfactorily. However, in the event

that such equipment is not available at the sites chosenfor this mission, the following pos-

sibilities exist:

a. Sendcommandsonly when the slant range permits, and store them all for

delayed execution.

b. Reducethe depth of the antennanulls from the -10 db used in the calculation.

Co Continuously command the satellite until a command is received satisfactorily,

recognizing that the attitude of the satellite relative to the ground station will

be continuously changing and that the deep nulls exist over only a small portion

of the pattern.

do Employ polarization diversity reception on the command receivers. This will

eliminate the three-db polarization mismatch loss and extend the range by a

factor of _/ 2
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e. Arrange to relay commandsin advanceto a station which is equippedwith a high-

power transmitter.

10.9 DATA STORAGE AND TRANSMISSION REQUIREMENTS

Table 9-2 lists the amount of data collected from each sensor for each of the three orbits.

The totals and their implications on the data storage and transmission requirements are

summarized in Table 10-16. The transmitter effective radiated power requirements were

obtained from Figures 10-29, 10-30, and 10-31.

10.10 SUMMARY OF RECOMMENDED TT&C SUBSYSTEMS AND THEIR CAPABILITIES

i0.10.1 ORBIT I: 1000-NAUTICAL MILE CIRCULAR

The Orbit I satellite would collect 240,000 bits of data each orbit and would store these in

eight magnetic core storage units (20 pounds of cores). After the orbit was well established,

the tracking beacon would be turned off, and the telemetry carrier activated by command

(either stored or real-time) to initiate the acquisition procedure.

Acquisition should be completed in less than two minutes, and the data would be read out

upon command from either the Fairbanks or the St. John's ground station at a rate of

400 bits per second for ten minutes, using PCM/FM/PM.

Orbits where neither of these ground stations had a clear line-of-sight to the satellite would

be extremely rare, and the loss of data on these orbits would be accepted.

10.10.2 ORBIT II: HIGHLY ELLIPTICAL

The Orbit II satellite would collect 800,000 bits of data each orbit and would store these in

a magnetic tape recorder. A second tape recorder would be available as a spare and to
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provide storage for a secondorbit of data on those occassions where a ground station was

not available uponcompletion of an orbit.

Up to two orbits of stored data would be transmitted near perigee upon command to the

Mojave, St. John's or Winkfield station at a rate of 6680 bits per second for four minutes,

using PCM/FM and noncoherent reception. Frequency acquisition would not be necessary,

and angular acquisition should be possible in less than one minute.

Because of the high eccentricity of this orbit, range and range-rate tracking would be

employed for brief periods when the telemetry data are not being transmitted. More fre-

quent tracking would be possible during the first few weeks before the solar cells have

degraded and while surplus power is available.

10.10.3 ORBIT III: 325-NAUTICAL MILE CIRCULAR

The Orbit III satellite would collect 150,000 bits of data each orbit and would store up to

two orbits of data in ten magnetic core storage units (25 pounds of cores).

It would be acquired in the same manner as the Orbit I satellite (in about two minutes), and

the data would be read out upon command from the Fort Myers, Santiago, Lima, or Quito

stations at a rate of 2500 bits per second for two minutes, using PCM/FM/PM.

Occasions where it would be necessary to go for more than two orbits without reading out

the data would be extremely rare, and the loss of data on these occasions would be accepted.

10.11 TYPICAL SATELLITE TT&C EQUIPMENT

10.11.1 GENERAL CONFIGURATION

Figure 10-35 shows a functional block diagram of the TT&C Subsystem for all three

missions.
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Specific equipment details will vary somewhat for each mission. Components described in

this report should be taken only as typical. In this preliminary study it has not been possible

to apply any significant effort to the selection of specific components.

i0. ii. 2 EQUIPMENT LISTS

Table 10-17 contains estimates of typical TT&C equipment for Orbit I, the 1000-nautical

mile circular orbit. Table 10-18 contains estimates for Orbit II, the highly elliptical orbit.

Table 10-19 contains estimates for Orbit III, the 325-nautical mile circular orbit.

The next phase of this program should include the establishment of detailed specifications

for the equipment and the selection of suitable sources, based on such important criteria as

capability, cost, reliability, flexibility, etc.

Some of the reasoning used and assumptions made in the selection and employment of these

components are discussed in the following section. Section 10.11.4 contains a description

of some typical components.

10.11.3 EQUIPMENT SELECTION DISCUSSION

A moderate amount of redundancy has been included in the equipment lists of the preceding

section. Both command receivers and both decoders are powered continuously to guard

against a command link failure. The spare magnetic tape recorder for the elliptical orbit

mission has been included for use in the event of premature failure of this critical compon-

ent. If both recorders are operative, the spare recorder may be used to accommodate data

collection for a second orbit when necessary.

The tracking beacon has been included in the circular orbit satellites for early orbit

determination. It will be used only during the first few weeks of the mission, and can

utilize the excess power available from the solar cells during this period.
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A range and range-rate transponder has been included for the elliptical orbit, in order to

permit an accurate ephemeris determination as soon after injection as possible. Tracking

for a period of about five minutes per orbit should generally be adequate, although somewhat

longer tracking periods during the first few orbits would be desirable. Tracking does not

need to be simultaneous with data transmission.

The transmitter output powers have been selected to provide the required effective radiated

power through antenna nulls of -10 db.

Future phases of this program should include a continuing study of the operational philosophy

of the missions in order to optimize the duty cycles. The telemetry link analysis contained

in Section 10.6 is general enough to allow a fairly wide latitude of operational approaches.

i0. ii. 4 DESCRIPTION OF TYPICAL COMPONENTS

10.11.4.1 Command Receiver

A typical STADAN command receiver is the model AD-183114 developed by AVCO under

NASA contract. This is a single-conversion AM receiver utilizing all solid-state circuits.

It may be used with either tone commands or tone-digital commands. Other pertinent

characteristics are as follows:

Frequency: 100 to 150 megacycles

Six-db bandwidth: 35 kilocycles

Sensitivity (75% modulation):

1 microvolt for tone commands

2 microvolts for tone-digital commands

Standby power: 100 milliwatts

Power during interrogation: 200 milliwatts

Weight: 1.5 pounds

Size: 6.3 inches diameter by 1 1/8 inches thick
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10.11.4.2 Command Decoder

A typical command decoder for the tone-digital system is the model P-102 developed by

Consolidated Systems Corporation under NASA contract. This equipment decodes PDM tone

bursts received from the satellite receiver and provides power to operate up to 70 external

relays which perform desired functions aboard the satellite. The decoder utilizes transistor

and magnetic core logic circuits to achieve its small size, low power consumption, and high

reliability. The magnetic core register occupies a space of only 1/2 inch by 2 inches square.

When tone bursts are not being processed, the only current drawn is the leakage current of

the transistors. All of the circuits are specially designed to be nonconducting when in

standby.

As shown in the block diagram of Figure 10-36, the decoder reads all data presented to it

from the command receiver. Each serial tone burst is compared with two timing circuits to

determine the information content. After this bit detection, the data are shifted, bit-by-bit,

into a magnetic-core shift register. After each word is read in, this register is interro-

gated for its contents. If the shift register contains the prewired address for its coder, the

address is detected, and the output portion of the unit is enabled. The succeeding words of

the same frame are read into the shift register, and the contents are interrogated by each

sync bit. When a valid command word is recognized by the command decoding section, the

enabled output section supplies the proper voltage for driving an external relay. The first

four-bit group is decoded to turn on an X relay driver, while the second four-bit group turns

on a Y relay driver in a 16 x 16 matrix. The output signals are taken at 70 selected inter-

sections of the 256 total, providing a signal to any one of 70 relays to actuate a satellite

function. Another model (P-101) in production uses an 8 x 11 X-Ymatrix to provide only 35

commands.

After the above frame has transpired, the output section is disabled. Subsequent frames are

read into the shift register, but no commands are generated until the decoder's address code

is recognized again.
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Other pertinent characteristics are as follows:

Standby Power: 2 milliwatts

Power during interrogation: 3.5 watts

Weight: Type P-101 (35 outputs) 2.2 pounds

Type P-102 (70 outputs) 2.7 pounds

10.11.4.3 Tracking Beacon

The Tracking beacon made by RCA for the Relay I satellite is typical of the type under

consideration. This unit is completely solid state and may be phase modulated. It has the

following pertinent characteristics:

Frequency: 136-137 megacycles

Power Output: 250 milliwatts minimum

Power Input: 2.0 watts maximum at 28 volts

Weight: 1.0 pounds

Volume: 20 cubic inches

Size: 4.0x4.0x 1.25 inches

10.11.4.4 Range and Range-Rate Tracking Transponders

10.11.4.4.1 VHF Transponder

A block diagram of the VHF R&RR tracking transponder, which was developed by Goddard

Space Flight Center and is presently being flown on the IMP Satellite, is shown in Figure

10-37.
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Figure 10-37. VHF R&RR Tracking Transponder

The following component data were obtained from Reference 10-28:

al The VHF transponder is packaged in a trapezoidal shape, 7 inches wide at the

base, tapering to 5 inches at the top, and 5 inches deep. It is comprised of four

modules, each about 1-1/4inch thick, and weighs 5 pounds.

b. The d-c power input requirement is 12 watts (requires 12 and 50-volt inputs).

c. Transmitter RF output power is 4 watts. (On IMP the telemetry is on a sub-

carrier, mo only 2 watts are available in the carrier for tracking).

d. The sensitivity is -U5 dbm.
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10.11.4.4.2 S-Band Transponder

The S-Band transponder is made by Motorola. A block diagram of the two-channel

configuration is shown in Figure 10-38 (Reference 10-8).

The following component data were obtained from References 10-8 and 10-29:

The transponder is available in two configurations, as below:

POGO EGO

Height 5.0 inches 6.3 inches

Length 13.0 inches 9.0 inches

Width 8.0 inches 6.2 inches

Weight 7.8 pounds 7.8 pounds

The addition of a third channel would add about 3/4 pound.

The d-c power input requirement (at 28 volts) is:

4 watts (standby)

15 watts (low-power transmitting)

24 watts (high-power transmitting)

Transmitter RF output power is 200 miUiwatts for low-power operation and 500 milliwatts

for high power.

The sensitivity is -105 dbm. (A program is underway to improve this to -110 dbm. )
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10.11.4.5 Programmer

The programmer provides the basic clock signals required by the PCM encoder and other

units and stores and automatically executes a predetermined program of commands gov-

ernin_ such events as separation of satellite and booster, deployment of solar panels,

transmitter turn-on, etc. Back-up for some of the programmed commands can be furnished

by transmitting commands from the ground. Provision should also be made to store a

limited number of transmitted commands for delayed execution.

The programmer includes a crystal oscillator, counter, decoding matrices, and output

buffers. The counter counts the oscillator output pulses, and the contents of the counter

are decoded to provide the required clock signals and commands through the output buffers.

Programmer operation is normally initiated on the launch pad. Shortly before liftoff the

counter is pre-set so that the program of commands is synchronized with liftoff time.

Counting in the programmer can be interrupted during holds in the launch countdown by

means of umbilical line disconnects, so that synchronism can be maintained.

10.11.4.6 PCM Encoder

The PCM encoder sequentially samples parallel analog or digital signal inputs from the

various sensors and converts them to a serially programmed digital output stream which

is stored in the data storage unit until read-out is commanded from the ground.

From the basic clock pulses provided by the programmer, the timing generator in the

encoder controls the sampling sequence of the sensor inputs and the internal functions

required for analog-to-digital conversion, generation of the synchronization pattern and

satellite identification signals.
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The encoder multiplexer gates the analog signals to the analog-to-digital converter, where

the stream of digital information representative of the analog input is generated. The out-

put of the converter is combined with digital inputs, satellite identification, and synchroni-

zation signals to make up the total output stream of digital information which flows to the

data storage unit.

10.11.4.7 Data Storage

For the two circular orbits, the orbital period is short enough that all the data collected

can be stored in highly reliable magnetic core storage units. For the elliptical orbit, the

14-hour orbital period results in the accumulation of a rather large amount of data on each

orbit (see Table 10-16). The weight of an adequate number of core storage units for this

case would be unreasonable, so a less reliable magnetic tape recorder will be required.

These are nearly all custom-assembled for each program, and a detailed investigation of

tape recorders (and any other more reliable alternatives) should be made after the

requirements have been firmly established.

One possible core storage unit is the Model MSA-1A-INT-30, 096, made by Di/An Controls,

Inc. It is a sequential access, coincident current core memory with internal addressing

and counting. Its ruggedness, small size, wide temperature range, and completely solid

state magnetic drive, with no internal heating or temperature control requirements, make

it quite suitable for aerospace applications. It has been fully qualified in accordance with

MIL-Q-9858. Data input and output is asynchronous, one bit at a time, at any rate up to

20,000 bits per second, and the capacity is 30,096 bits.

Data are read out sequentially, one bit at a time, and then re-stored in the memory. Thus,

the information stored in a particular core is erased only when that core is required for

new information. After the unit has once been filled, it will always contain the last 30,096

bits received from the encoder.
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The weight estimates for the core storage units in Tables 10-17 and 10-19 have been

made under the assumption that several of these separate units will be used in the satellite,

with appropriate control circuitry to switch among them as they are filled. This is

probably a conservative estimate, since a lighter unit could be achieved by packaging

the required number of cores in a single chassis.

Another core storage possibility is a 10,000-bit unit weighing 1.5 pounds, as announced

by Electronic Memories, Inc. (EMI) in Reference 10-30.

10.11.4.8 Transmitter

Lightweight, reliable, solid-state 136 megacycle transmitters are available from many

sources. A tailor-made transmitter can be built economically and with confidence once the

output power requirements have been firmly established. The spare transmitter shown in

Figure 10-33 will probably not be needed, but has been included since the weight penalty of

this redundancy is less than 3/4 pound.

As mentioned in Section 10.6, a frequency stability of 1:105 is desirable in order to

minimize the acquisition time.

10.11.4.9 Antennas

Since the satellite will be sun-oriented, a nearly isotropic antenna pattern is desirable for

communications with the earth. This will be difficult to achieve, due to the large solar

concentrator and the solar panels.

The most satisfactory approach, as shown in Figure 13-3, appears to be the use of two

quarter-wave (22-inch) monopoles, fed in quadrature. These are currently being used by

General Electric on the Biosatellite program. They are lightweight and flexible, having an

appearance similar to an ordinary steel measuring tape. They fold down conveniently
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against the satellite body during launch and automatically spring into position after the

shroud has been ejected.

The use of polarization diversity combiners at the ground stations will maximize the signal

received from these antennas.

i0.12 SUMMARY AND CONCLUSIONS

Based on the results of this investigation it appears that the telemetry, tracking and

command requirements for all three missions can be satisfied using conventional techniques

and in general components which have already been developed and used in satellite applica-

tions. The telemetry link analyses have indicated that the transmitter power requirements

in all cases are extremely modest. Therefore, it will be possible to realize a bit error
-5

probability of 10 without paying an unreasonable price in transmitter power requirements.

This analysis also indicates that the maximum data handling requirements outlined in

Table 9-2 can be met without creating any serious problems. As a result the TT&C sub-

system does not impose any restrictions on including all of the priority "A" and priority "B"

secondary experiments on the spacecraft.

A block diagram of tl_ proposed TT&C subsystem is given in Figure 10-35. A listing of the

required components and their size, weight, and power requirements for missions A, B,

and C are given in Tables 10-17, 10-18 and 10-19 respectively.
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SECTION11

ATTITUDE CONTROLSUBSYSTEM

ii. 1 INTRODUCTION

The Attitude Control Subsystem has four major functions: (1) to accomplish initial stabili-

zation and orientation of the spacecraft after separation from the launch vehicle, (2) to

provide the required sun pointing accuracy for the solar thermionic experiment and the

solar cell panels, (3) to maintain a spacecraft attitude during the dark segment of the orbit

such that the maneuvers required for reorientation will be minimized, and (4) reorientation

of the spacecraft to the sun after each dark period.

At the outset of this study the decision was made to orient the entire spacecraft to the sun

during the daylight portion of the orbit rather than attempt to orient the solar thermionic

system, solar cell panels, etc., to the sun and the remainder of the spacecraft to the earth.

The following were major factors in arriving at this decision:

a. If the main spacecraft body was earth oriented, the solar thermionic system,

solar cell panels*, sun pointing secondary experiments, etc., would all have to

move with respect to the spacecraft body and this would add considerable complexity

and weight to the vehicle.

b. There is no major requirement for the spacecraft to be earth oriented.

In consideration of these factors, there appears to be significant advantages, primarily in

simplifying the spacecraft design and increasing the overall reliability, to orienting the total

spacecraft to the sun. At the same time, there are no major disadvantages apparent in this

approach.

*The spacecraft power requirements and the constraints placed on the vehicle by the solar

concentrator are of sufficient magnitude that fixed solar cell panels, or solar cells mounted

to the spacecraft body, do not provide a satisfactory means of obtaining the required elec-

trical power.
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In the following sections, the required orientation accuracy is established, various methods

of performing the attitude control functions are considered, and an approach selected for

each of the three missions being studied. Block diagrams are presented for the chosen

systems; size, weight andpower estimates are made.

The attitude control subsystemdesign is based ona spacecraft life of one year.

11.2 ORIENTATION ACCURACY REQUIRED

Having chosen to orient the total vehicle to the sun, the required spacecraft orientation

accuracy is determined by the solar thermionic system. A solar thermionic system requires

very precise sun orientation if it is to operate near maximum system efficiency. To under-

stand the reasons for this, consider the thermionic generator cavity and how it functions.

The energy collected by the solar concentrator gains entrance to the generator cavity

through an aperture opening. The size of this opening is very critical to the thermionic

system performance. As described in Section 4.4 (Volume I1), selection of the aperture

diameter is based on maximizing the concentrator-absorber efficiency which is defined by:

ca
Net Energy Available in Cavity (Qn)

Concentrator Projected Area (Ac) x Solar Intensity (S)

The factor of interest here is the net energy available in the cavity, Qn" Net energy is

defined as the energy entering the aperture minus that lost by reflection and re-radiation

back out the aperture. Net energy then represents that energy available in the generator cavity

for thermal insulation losses and for use by the thermionic converters. For a given aperture

diameter a certain amount of energy will enter the generator cavity. If the aperture diameter

is sufficiently large, all of the energy reflected from the concentrator surface will enter the

cavity. However, a portion of the energy entering the cavity will be lost by reflection and

re-radiation back out the aperture opening. Thus the larger the aperture opening the more

energy will enter the cavity (up to a point) but the greater the cavity losses will be from
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reflection and re-radiation. Therefore, if for a given concentrator and orientation error,

a plot is made of net energy versus aperture diameter, the resulting curve will have a

definite peak which defines the optimum aperture diameter.

Obviously, any factors that tend to increase the aperture diameter increase the reflection

and re-radiation losses and subsequentlyreduces the system efficiency. The orientation

accuracy then has a very significant effect on the system efficiency, since the larger the

orientation error the larger the optimum aperture diameter and the greater the cavity losses.

The effect of increasing orientation error on concentrator-absorber efficiency is shownin Fig-

ure 11-1 (Reference 11-1). This plot is for a concentrator radial geometric error of 3 _ = 12

minutes and a cavity temperature of 2000°K. These conditions are identical to those assumed

in this study. This curve shows that the concentrator-absorber efficiency decreases approxi-

mately one percentage point for every one minute increase in orientation error. * Therefore,

the concentrator-absorber efficiency for a six-minute orientation error angle, has dropped

from 74 percent at zero orientation error to 68 percent.

Although the decrease in concentrator-absorber efficiency with increasing orientation error

is significant, this is only part of the picture. Consider a fixed generator size, as the con-

centrator-absorber efficiency decreases the energy available to the thermionic converters

becomes less and the emitter temperature drops. Since thermionic converter power density

increase with temperature is greater than linear, a relatively small decrease in emitter

temperature can result in a sizable decrease in thermionic converter power output. This

condition is illustrated by Figure 11-2 (Reference 11-2). This figure presents the decrease

in generator power output, in percent of the perfect orientation value, as a function of

orientation error. The results presented in this figure are based on experimental measure-

ments made by the General Electric Spacecraft Department on a three converter thermionic

generator operated with a five-foot-diameter solar concentrator. The details of how these

measurements were made are covered in Reference 11-2. This curve shows a three percent

*This result verifies the conclusion reached in Section 8.9.2, which was based on a completely
independent analysis.
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decrease in generator power output between the zero and six-minute orientation error points

and a 13 percent decrease between the zero and 12-minute points. Doubling the orientation

error then more than quadrupled the percentage decrease in generator power output. Also,

as the misorientation error becomes greater, the problem of non-uniform temperature dis-

tribution within the cavity becomes more acute.

Obviously, it is desirable to keep the orientation error as small as possible. A value of ± 6

minutes was chosen for this design because it can be achieved with existing techniques which

have been demonstrated, and as indicated in Figures 10-1 and 10-2, this degree or orientation

accuracy will permit a high level of thermionie system performance.

11.3 DISTURBANCE TORQUES

There are a number of natural phenomena that exert forces on a space vehicle and thereby

give rise to torques about the vehicle's control axes. These torques constitute disturbances

and so the spacecraft attitude control subsystem must be designed to cope with them. Dis-

turbance torques may be classified in two general categories; those that are cumulative and

those that are cyclic. The momentum changes that the spacecraft experiences due to these

disturbance torques must be compensated for by momentum exchanging or dumping devices.

Momentum changes due to cumulative disturbance torques are dumped (i. e., removed} from

the spacecraft by the application of external torques in the opposite sense on the spacecraft

body. These external torques are generally applied by means of pneumatic mass expulsion

devices.

Momentum changes due to cyclic disturbance torques (i. e., torques that provide a net momen-

tum contribution of zero at the end of each orbit) can be compensated for by the use of

momentum-interchange devices such as flywheels.

The following disturbance torques were considered in this study:

a. Gravity gradient
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b. Aerodynamic drag

c. Solar radiation pressure

d. Micrometeoroid impacts

e. Magnetic field

f. Orbit eccentricity.

The magnitude of each of these disturbance torques is estimated in the following sections for

the spacecraft configuration given in Figure 13-3 of Section 13. The pertinent spacecraft

parameters neededfor the disturbance torque calculations are presented in Table 11-1. The

values presented in Table 11-1 were computedin Section 13.

To evaluateeach of these disturbance torques in detail would be a costly undertaking which

was beyond the scope of this study. As a result, the disturbance torque estimates made in

the following sections are generally basedon limiting worst case conditions. As a consequence

of this approach, the estimated disturbance torques are considered conservative and a detailed

analysis shouldyield significantly smaller demandson the attitude control subsystem.

11.3.1 GRAVITY GRADIENT

The gravitational torque results from a displacement of the center of gravity from the center

of mass in any direction which is not colinear with the gravity gradient. Since the force of

gravity, ignoring the earth's oblateness, is inversely proportional to the square of the distance

from the earth's gravitational center, a body with finite dimensions cannot have a coincident

center of mass and center of gravity. Thedisplacement results from the fact that the points

below the center of mass are closer to the center of attraction, and each element of mass at

these points is subject to a larger force. The inference may be made that the gravitation

torque dependsuponthe mass distribution of the body andthe orientation of the body with

respect to the local vertical.

11.3.1.1 Governing Equation

The angular impulse due to the gravity gradient disturbance torques is made up of cumulative
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TABLE 11-1

Spacecraft Parameters Used In Disturbance Torque Calculations

PARAME TER

Projected area of spacecraft-looking

down the roll axis, A 1

Projected area of spacecraft-looking

down the pitch or yaw axis, A 2

Spacecraft inertia about the yaw

axis, I
oy

Spacecraft inertia about the

pitch axis, I
OX

Spacecraft inertia about the

roll axis, I
OZ

Distance between center of

pressure and center of mass-

looking down the roll axis, d I

Distance between center of

pressure and center of mass-

looking down the pitch or

yaw axis, d 2

NUMERICAL VALUE

36.8 ft 2

8.3 ft 2

35.2 slug-ft 2

35.2 slug-ft 2

49.3 slug-ft 2

O. 208 ft

0. 067 ft
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and cyclic components. Expressions defining the maximum values of these two components

are developed in Reference 11-3 and are represented by Equations 1 and 2 below.

[: :loy ox

3 (_GM)1/2 (i)

H (cUm) max = 2 [a(l_e2)] 3/2 /i°x - °zJr_
I_ oz Ioy

3 (GM) 1/2

H(cyclic)max - 2 [a (1-e 2)]3/2

I loy

Ii°x

OZ

- l°x]

- loz

- loy

(0.5 + 0.33 e) (2)

where

a

G

M

I
OX

I
oy

I
OZ

= One half the major axis of the orbit, ft

= Eccentricity of the orbit

= Universal constant of gravity, ft3/lb-sec 2

= Total mass of the earth, lb

= Moment of inertia about the pitch axis, slug-ft 2

= Moment of inertia about the yaw axis, slug-ft 2

= Moment of inertia about the roll (sun pointing) axis, slug-ft 2.

11.3.1.2 Numerical Calculations

A. Mission A

The following parameters apply for a 1000-nautical mile circular orbit with an inclination of

101.84 degrees

a = (3440 + 1000) 6.08 x 103 = 2.7 x 107 ft

e = 0
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P (Orbit period) = 7450 sec

GM = 1.408 x 1016 ft3/sec 2

I = I = 35.2 slug-ft 2
ox oy

I = 49.3 slug-ft 2
oz

Substituting these numerical values into Equation 1 gives

E21016jlJ2E0]lH (cure) = 3 1.408 x

max (2.7 x 107) 3
14

-2
5.6 x 10 ft-lb-sec

?r

The attitude control subsystem mass expulsion devices are required to generate that com-

ponent of angular momentum which is cumulative. The angular momentum storage devices

(i. e., flywheels) are required to store the maximum value of the angular impulse (both cyclic

and cumulative) which occurs during the period of control. The period of control could be as

short as one orbital period or as long as several periods, if the cumulative component of

torque could be stored economically for these several periods. Since the cyclic component

of torque will be relatively high when all cyclic components of the various disturbance torques

are added, the period of control was chosen to be one orbit.

The mass expulsion devices will be required to generate the following maximum amount of

angular momentum in one year for the 1000-nautical mile orbit in order to handle the gravity

gradient disturbance alone.

*The negative sign denotes direction and since the concern here is with magnitude only the

signs will be dropped in the remainder of this analysis.
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H (GravitY)max = H (cure)max pitch + H (cUm)max yaw

periods in one year

= 2 x5.6x 10 -2x4.23x 103

= 472 ft-lb-sec

x number of orbit

The maximum cyclic capacity required of the momentum storage device can be calculated

from Equation 2.

H (Cyclic)
max 27x10161lj2E°]3 1. 408 x

- 2 107) 3 -14 0.5
14

= 8.87 x 10-3 ft-lb-sec

Following the same procedure outlined here the angular impulse and momentum storage

requirements resulting from the gravity gradient disturbance torques are computed below

for the Mission B and C cases.

B. Mission B

The following parameters apply for a 200 by 25,000-nautical mile orbit with an inclination of

45 degrees.

2a = (6876 + 25,000 + 200) 6.08 x 103

e = 0.77

P = 50,400 sec

GM = 1.408 x 1016 ft3/sec 2

I = I = 35.2 slug-ft 2
ox oy

I = 49.3 slug-ft 2
OZ

=1.95x 108 ft

ii-ii



Therefore,

[ 1016]lj2[0]3 1.408 x -14

H (Cure)max - 2 (6.24 x 107) 3 14

-2
1.6 x i0 ft-lb-sec

?r

The total maximum cumulative momentum for a one year period then is

A H (GravitY)ma x
2x1.6x 10 -2 103= x 0.625 x

= 20 ft-lb-sec

The maximum cyclic capacity required of the momentum storage device is

1/2

[6 [0]3 1. 408 x

H (Cyclic)max - 2 i07)3 -1414 (0.5 + 0.254)

= - 3.86 x 10 -3 ft-lb-sec.

C. Mission C

The following parameters apply for a 325-nautical mile circular orbit with a 30 degree

inclination.

a = {3440+325) 6.08x 103 =2.3x 107 ft

e = 0

P = 5800 sec

GM = 1. 408 x 1016 ft3/sec 2

I = I = 35.2 slug-ft 2
ox oy

I = 49.3 slug-ft 2
OZ
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Therefore,

[ lo16]lj2[o]3 1. 408 x -14

H (Cum)ma x - 2 (2.3 x 107) 3 14

= - 0. 071 ft-lb-sec.

The total maximum cumulative momentum for a one year period then is

A H(GravitY)max
= 2x0.071x5.44x 103

= 772 ft-lb-sec.

The maximum cyclic capacity required of the momentum storage device is

H
(Cyclic)max (2.3 x 107) 3 14

= 0. 011 ft-lb-sec.

The angular impulse and momentum storage requirements resulting from the gravity gradient

torques are summarized in Table 11-2.

11.3.2 AERODYNAMIC DRAG

In low altitude earth orbits, the air density is sufficient to cause an appreciable atmospheric

drag on the spacecraft. The product of this atmospheric drag and the distance between the

spacecraft center of mass and the center of pressure results in an aerodynamic torque on

the vehicle.
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Table 11-2. Angular Impulse and MomentumStorage Requirements Resulting
From Gravity Gradient Torques

Maximum Angular Impulse Requirements
Ft-Lb-Sec/year

Roll

Pitch

Yaw

Momentum StorageRequirements
Control Ft-Lb-Sec/orbit
Axis

Mission A Mission B Mission C Mission A Mission B Mission C
1000NM 200by2500NM 325 NM 1000NM 200by2500NM 325 NM

0 00

10

10

0

386

386

-2
6.49x10

-2
6.49x10

0

-2
2.0xl0

-2
2.0xl0

0

236

236

-2
8.2x10

-2
8.2x10

11.3.2.1 Governing Equation

The aerodynamic drag is given by:

Aerodynamic drag = C D q A

= C D (1/2pV 2) A

- 2 P
A

where
C D = Coefficientof drag = 2.2 (Reference 11-4)

q = Dynamic Pressure, Ibs/ft2

R = Orbit radius ft

P = Orbit period, seconds

= 2 _ for circular orbits

g = Acceleration of gravity, ft/sec 2

p = Atmospheric mass density at orbit altitude, lb-sec2/ft 4

A = Vehicle projected area, ft 2.
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Substituting,lJg°and2
weight at orbit altitude (lb/ft3) ' _/yields

for P, where P l equals the atmospheric specific

Aerodynamic drag = 1.1 p 1 RA

Multiplying the aerodynamic drag by the distance between the center of pressure and the

center of mass gives the aerodynamic torque. Referring to Figure 11-3 the aerodynamic

disturbance torque as a function of the spacecraft's position in orbit is:

where

A 1 = Area in the pitch-yaw plane, ft 2

A 2 = Area in the pitch-roll (or yaw-roll) plane

d 1 = Distance between center of pressure and center of mass for area A1, ft

d 2 = Distance between center of pressure and center of mass for area A 2, ft

e = is the angle between the aerodynamic force and a normal to the surface on

which it acts (See Figure 11-3), degrees.

A 2 SURFACE

CM

CP

SPACECRA FT

CM CP

A 1 SURFACE

NORMAL TO SURFACE a 1
SUN LINE

NORMAL TO SURFACE A 2

Figure 11-3. Aerodynamic Forces Acting on Vehicle
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Obviously the maximum value of aerodynamic torque occurs when 0 = 90 degrees.

case the aerodynamic torque expression becomes

T = 1.1p R (Ald 1 +max 1 A2d2 )

11.3.2.2 Numerical Calculations

For this

(3)

A. Mission A

The Mission A spacecraft is in a 1000-nautical mile circular orbit inclined at 101.84 degrees.

At this high an altitude the aerodynamic drag is very low, producing negligible aerodynamic

torques.

B. Mission B

The Mission B spacecraft is in a highly elliptical orbit with a perigee of 200 nautical miles

and an apogee of 25,000 nautical miles. This orbit has an inclination of 45 degrees. This

case is complicated by the fact that the orbit is not circular and the spacecraft encounters an

extremely wide variation in aerodynamic drag throughout the orbit. In addition, the cumulative

momentum is generally not zero since aerodynamic drag is full-period cyclic rather than

half-period cyclic as gravity gradient and magnetic torques are. Since the aerodynamic

torques encountered near apogee are negligible in comparison to those experienced at perigee,

the cumulative momentum will not be zero at the end of each complete orbit.

For this case the following parameters apply.

A 1 = 36.8 ft 2 d 1 = 0.208 ft

A 2 = 8.3 ft 2 d 2 = 0. 067 ft

P e ri eg_e_e_ A o__Ap__qg_e_

P 1 = 7.25x 10 -13 lb/ft3 P 1
(Maximum value, taken

from Figure 11-4)
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R
3

= (3440 + 200) 6.08 x 10

= 2.22x 107 ft

R = (3440 + 25,000) 6.08 x 103

= 17.3x 107 ft

Obviously the maximum aerodynamic torque occurs at perigee and can be computed using

Equation 3.

-13 -7
T =1.1x7.25 xl0 x2.22 xl0

max
-5

= 14.5 x 10 ft-lb

(36.8x0.28+ 8.3 x0.067)

The time required for the spacecraft to go from perigee (200 nautical miles) to various

altitudes was computed and is shown below:

Orbit Altitude-Nautical Miles Time-Seconds

250 151

325 201

400 252

1000 550

As a worst case condition the maximum torque calculated for the 200-nautical mile point

will be assumed to act on the spacecraft for the time required to travel from the 325-nautical

mile point on one side of perigee to the 325-nautical mile point on the other side. As shown

above, this takes 402 seconds. The torque calculated, in the following section

for the 325-nautical mile altitude will be assumed to act on the vehicle from the

400-nautical mile points to the 325-nautical mile points or for a period of 102 seconds. The

aerodynamic drag will be considered negligible above 400-nautical miles. Therefore,

H -5
max = 14.5x 10

-2
= 5.87 x 10

-6
(402) + 5.07 x 10 (102)

ft-lb-sec.

Since the torque cannot be considered cyclic in this orbit, aerodynamic effects impose

angular impulse requirements on the mass expulsion control devices as well as on the mo-

mentum storage devices. The angular impulse requirements for one year are:
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-2
H = 5.87 x 10

max
-2

= 5.87 x 10

x orbits/year

x 0. 625 x 103

= 36.7 ft-lb-sec.

C. Mission C

The Mission C spacecraft is in a 325-nautical mile circular orbit with an inclination of 30

degrees. For this case the following parameters apply:

A 1 = 36.8ft 2 d I = 0.208 ft

A 2 = 8.3ft 2 d 2 = 0.067 ft

Pl = 2.45 x 10 -14 lb/ft 3 (Average value taken from Figure 11-4)

R = (3440 +325) 6.08x 103 = 2.29x 107 ft.

Substituting these values into Equation 3 yields,

T
max

-14
= 1.1x2.45x 10

= 5.07 x 10 -6 ft-lb.

x2.29x 107 (36.8x 0.208 +8.3x 0.067)

Assuming that this maximum disturbance torque exists throughout the orbit, the maximum

momentum storage requirements for half of an orbit would be:

P
AH = T x-

max max 2

96.7
= 5.07x 10-6x _ x60

-3
= 14.7 x i0 ft-lb-sec.

The angular impulse and momentum storage requirements resulting from the aerodynamic

torques are summarized in Table 11-3.
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Table 11-3. Angular Impulse and Momentum Storage Requirements

Resulting from Aerodynamic Torques

Control
Axis

Roll

Pitch

Yaw

Maximum Angular Impulse Requirements

Ft-Lb-Sec/year

Mission B

200by 2500NM

Mission A

1000NM

0

0

0

0

36.7

36.7

Mission C

325 NM

Momentum Storage Requirements

Ft-Lb-Sec/orbit

Mission A

1000 NM

Mission B

200by 2500 NM

0

-2
5.87x10

-2
5.87x10

0

0

0

Mission C

325 NM

0

-3
14.7x10

-3
14.7x 10

ii. 3.3 SOLAR RADIATION PRESSURE

In a medium in which waves are propogated, there is a pressure in the direction normal to

the waves. The photons emitted from the sun exert a pressure on the surfaces of a space

vehicle. The resulting forces and torques exerted on the spacecraft depend upon the

geometry of the configuration, the nature of the surfaces, the angle from which the solar

rays arrive, and the distance from the sun.

11.3.3.1 Governing Equation

The force on a body of area A due to solar radiation pressure is given by

Po [Fp - D2- A COS 0 (a+Pd) _+(2ps 2 P -]cos e +_ d ) n
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where

-7
= Solar pressure constant (at 1AU) = 0.965 x 10P lb/ft 2

O

D = Distance of body from the sun, AU

8 = Angle of incidence between the sun's rays and a normal to the body surface

= Fraction of the incident solar energy absorbed by the surface

Pd = Fraction of the incident solar energy diffusely reflected from the surface

Ps = Fraction of the incident solar energy specularly reflected from the surface

s = Unit vector in the direction of the incident energy on the surface
B

n = Normal unit vector with its positive sense normal to the surface.

For this application the spacecraft will be sun pointing with an accuracy of ± 0.1 degree so

0 is essentially zero degrees and the cos 0 term is one. For all three missions the space-

craft's distance from the sun, D, is 1 AU. Applying these conditions the governing equation

reduces to

[ 2 ]Fp = 0.965x 10 -7 A ((_+ pd ) s + (2P s +_-pd) n (4)

The torque acting on the spacecraft due to solar radiation pressure is

T = F x d 1 ftBlb (5)P P

where

d 1 = Distance in feet between the center of pressure and center of mass looking

down the roll axis.
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11.3.3.2 Numerical Caleulations

The torque resulting from solar radiation pressure is essentially the same for all three

missions* and will be computed first.

The projected area of the spacecraft facing the sun is made up predominantly of the solar

concentrator, the secondary experiment panels and the solar cell panels. The area,

absorptivity, and reflectivity of these three areas is estimated below:

Solar cell panels

Secondary experiment panels

Solar concentrator

A-Ft 2 _ P d P s

14 0.65 0.3 0.05

8 0.2 0.75 0.05

13.6 0.1 0.01 0.89

Substituting these numerical values into Equation 4 gives

F
P

-7
= 0.965 x 10

÷

I 214 [(0.65 +0.3)+(2 x 0.05 +-_ x 0.3)]
2

s [(0.2 + o. 7_) ÷ (2 x o. 05 + _ x o. 75)]

÷ 1a. 6[(0.1 ÷0.01/÷(2x o. s9÷-_xO.01)]
-6

= 5.45x 10 lb.

From Table 11-1 the distance between the center of pressure and the center of mass when

looking down the roll axis is 0.208 feet. Substituting numerical values into Equation 5 gives

the solar radiation pressure torque on the vehicle.

-6
T = 5.45 x 10 x 0.208

P -7
= 11.3 x 10 ft-lb.

*The torque acting on the spacecraft would be approximately 13 percent higher in the Mission

C case because of the slightly larger solar cell panels (see Figure 13-3 in Section 13).
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The solar radiation pressure torque will be cumulative. The momentum storage and

angular impulse requirements can nowbecalculated.

A. Mission A

The period for the 1000-nautical mile orbit is 2.07 hours and during the initial phase of the

experiment there will be no shadow periods.

The maximum momentum storage requirement then for one orbit is

H = T x time in sunlight
P -7

= 11.3x 10 x 2.07x 3600

-3
= 8.52 x 10 ft-lb-sec.

Refer to Figure 3-18 in Section 3.3.4 (Volume II). The orbit will be shadow free for the

first 162 days and the shadow period will average approximately 14 minutes per orbit over

the remaining 203 days of the mission life. For a 2.07 hour orbit period the vehicle will

make 11.6 orbits per day. The angular impulse required for one year then is

-7
11.3 x 10 (162 x 24 x 3600 + 203 x 11.6 x 110 x 60)

33.4 ft-lb-sec.

B. Mission B

The period for the 200 by 25,000-nautical mile elliptical orbit is 14 hours. Referring to

Figure 3-19 in Section 3.3.5 (Volume II) it is apparent that a short period exists where no

shadow is encountered.

The maximum momentum storage requirement then for one orbit is

H 11 3 x 10 -7= . x 14 x 3600
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-2
H = 5.68 x 10 ft-lb-sec.

Again referring to Figure 3-19, the average shadow period per orbit will be 20 minutes

(this figure takes into account that there are orbits during the one year life where no shadow

period is encountered). The spacecraft will make 1.71 orbits per day in this orbit. The

angular impulse requirement for one year is then:

AH

= 34.5 ft-lb-sec.

-7
11.3x10 (365x 1.71x 13.7x3600)

C. Mission C

The orbit period for the 325-nautical mile circular orbit is 1.61 hours. Referring to

Figure 3-4 in Section 3.3.1 (Volume II), the average shadow period per orbit is 36 minutes.

There are no periods during the one year life when a shadow period is not encountered

during an orbit.

The momentum storage requirement for one orbit then is:

H 11.3 x 10 -7
36

= x (i.61 - _-_)
-3

= 4.1 x 10 ft-lb-sec.

36O0

The spacecraft makes 14.9 orbits per day in this orbit.

one year then is:

-7
AH = 11.3x 10 (365x 14.9x 1.01x3600)

The angular impulse required for

= 22.4 ft-lb-sec.

The angular impulse and momentum storage requirements resulting from the solar

radiation pressure torques are summarized in Table 11-4.
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Table 11-4. Angular Impulse and Momentum Storage Requirements

Resulting From Solar Pressure Torques

C ontrol

Axis

Roll

Pitch

Yaw

Angular Impulse Requirements

Ft-Lb-Sec/year

Mission A

1000NM

0

33.4

33.4

Mission B

200x25000NM

0

34.5

34.5

Mission C

325NM

0

22.4

22.4

Momentum Storage Requirements

Ft-Lb-Sec/orbit

Mission A

IO00NM

0

-3
8.52x10

Mission B

200x25000N1E

-2
5.68x10

-2
5.68x10

-3
8.52x10

Mission C

325NM

0

-3
4. lx10

-3
4. lxl0

11.3.4 MICROMETEOROID IMPACTS

The micrometeoroids striking the spacecraft during each orbit will impart an angular

momentum to the vehicle which must be counteracted.

ii. 3.4.1 Governing Equations

The number of meteoroids striking the spacecraft in one day may be approximated by the

following relationship:

A N
S m

n -
m A 2

e

where

n = Number of meteoroids, of magnitude m, to strike the spacecraft per daym

N = Number of meteoroids, of magnitude m, to strike the earth per day
m
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A
S

A
e

= Exposed surface area of the spacecraft, ft 2

= 1015Surface area of the earth = 5.49 x ft 2.

The factor of 1/2 in the above equation is due to the shadowing effect provided by the earth

which for a circular orbit tends to diminish the number of meteoroids hitting the spacecraft

by one-hall.

The total surface area of the spacecraft (see Figure 13-3 Section 13) is approximately 104

square feet. Substituting numerical values for A and A into the basic equation givess e

n = 9.47 x 10 -15 N m. (6)
m

Only those particles with at least a fifty percent probability of hitting the spacecraft will be

considered in the calculation of the meteorite disturbance effect. The probability of K hits

in a fixed interval of time, T, is given by Poisson's distribution.

- ),T (XT)
P(K, AT) = e

K!

k

where

X = The average number of hits per unit time, T

T = Orbit period.

A fifty percent probability of being hit at least once is equivalent to a fifty percent probability

of not being hit (i.e., K=0). Therefore

-AT
P(O, _.T) = e

Setting this equation equal to 0.5 and solving for _, T (average number of hits in time T) gives

),T = log e (0.5) = 0.693
(7)
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This equation states that those meteoroids, of magnitude m, that hit the spacecraft less

than 0. 693times in one orbit, have less thana 50 percent probability of hitting it in that

orbit.

11.3.4.2 Numerical Calculations

Since in the vicinity of earth the meteoroid density increases as the distance from the earth

decreases* the worst case will occur in the 325-nautical mile orbit associated with Mission

C. This case will be considered first.

A. Mission C

An experimental study of the meteor population in the vicinity of earth was made by Whipple

(Reference 11-4) and the results are summarized in Table 11-5. The data presented in

Table 11-5 was used along with Equations 6 and 7 to generate the data presented in Table

11-6. This table does not consider any particles smaller than visual magnitude 22. The

reasoning behind this is based on the Poynting-Robertson effect which theorizes that the

smaller particles are swept away from the earth by solar radiation pressure.

From Table 11-6, the only particle size that has a larger than 50 percent probability of

hitting the spacecraft during one orbit, is the particle size with a visual magnitude of 22.

As a worst case assume that the particle strikes the spacecraft at the point most distant

from the center of mass. For the spacecraft configuration shown in Figure 13-3 in Section

13, this distance would be approximately five feet. The maximum momentum storage

requirement for one orbit would be

H = M22xVxrxmax n22

*This is true up to the point where the atmospheric density becomes significant and the

particles burn up in the atmosphere.
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Table 11-5. Data Concerning Meteoroids

METEOR

VISUAL

MAGNITUDE

(M)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

MASS
2

(gm - sec

/cm)

25.0

9.95

3.96

i.58

O.628

O.250

9.95 x 10-2

3.96 x 10-2

1.58 x 10-2

6.28 x 10-3

2.50 x 10-3

9.95 x 10-4

3.96 x 10-4

RADIUS

(u)

1.58 x 10 -4

6.28 x 10 -5

2.50 x 10 -5

9.95 x 10 -6

3.96 x 10 -6

1.58 x 10 -6

6.28 x 10 -7

2.50 x 10 -7

9.95 x 10 -8

3.96 x 10 -8

1.58 x 10 -8

6.28 x 10 -9

2.50 x 10 -9

49,200

36,200

26,600

19,600

14,400

10,600

7,800

5,740

4,220

3,110

2,290

1,680

1,240

ASSUMED

VE LOCITY

(km/sec)

28

28

28

28

28

28

NUMBER STRIKING

EARTH

(per day)

910

669

492

362

266

196

144

106

78.0

57.4

39.8*

25.1"

15.8*

28

28

27

26

25

24

23

22

21

20

19

18

17

16

15

15

15

15

15

15

2 x 108

5.02x 108

1.27 x 109

3.18 x 109

7.97 x 109

2 x 1010

5.20x I0I0

1.27x 1011

3.18x 1011

7.97x 1011

2x 1012

5.02 x 1012

1.27 x 1013

3.18 x 1013

7.97x 1013

2x 1014

5.02x 1014

1.27x 1015

3.18 x 1015

7.97x 1015

2 x 1016

9.95 x 10-10

3.96 x I0-I0

1.58 x 10-10

6.28 x 10-11

2.50 x 10-11

9.95 x 10-12

10.0* 15

6.30* 15

3.98* 15

2.51' 15

1.58* 15

1.00 15

5.02x 1016

1.27 x 1017

3.18x 1017

7.97x 1017

2x 1018

5.02x 1018

Note:

* Maximum radius permitted by solar light pressure
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where

M22

V

n22

= The mass of magnitude 22 meteoroids, lb-sec2/ft

= Velocity of magnitude 22 meteoroids (see Table 11-5), ft/sec

= Distance between impact point and the spacecraft center of mass, ft

= Number of hits per orbit (See Table 11-6)

The numerical values which apply to this case are:

M22

V

2
= 4x 10 -8gm-sec /cm

= 15km/sec

r = 5ft

n22 = 0.88.

Substituting numerical values and the appropriate conversion factors gives,

-8 -3
H = 4x 10 x2.2x 10

max
-5

= 1.9 x 10 ft-lb-sec.

x 15x 3.28x 103x 5x 0.88

Table 11-6. Meteoroid Impacts for 325-Nautical Mile Orbit

Meteor

Visual

Magnitude

10

11

12

13

14

15

16

17

18

19

20

21

22

Mass

(gm-sec 2

/era)

2.5x10 -3

lxlO-3

4xlO -4

i.6x 10-4

6.3x10 -5

2.5x10 -5

lx10 -5

4x10 -6

1.6x10 -6

6.3x10 -7

2.5x10 -7

lx10 -7

4x10 -8

Number

Striking

Spacecraft

Number

Striking

Spacecraft
Per Orbit Per Year

Percent Probability
Of

Hitting at Least One Time
In One Orbit

1.4Xlo -5

3.4xi0 -5

8.8xlO -5

2.2x 10-4

5.4x10 -4

1.4xlO -3

3.4x10 -3

8.8x10 -3

2.2x10 -2

5.4x10 -2

1.4x10 -1

3.4x10 -1

8.8x10 -1

In One Year

7.3xlO -2

i.8xlO -I

4.7xlO -I

1.2

2.9

7.3

18

47

i.2xlO 2

2.9x102

7.3x102

1.8x103

4.7x103

m

1

2

5

13

29

58.5

7

16.5

37.5

70

94.5

100

100

100

100

100

100

100

100
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In calculating the mass expulsion requirements for one year, all of the particle sizes

between magnitudes 13 and 22 must be considered since they all have a larger than

50 percent probability of striking the spacecraft in the one year period. Assuming that

the cumulative effect of the meteroids would be equivalent to the total meteoroid mass

of all magnitudes acting at the center of pressure, the angular impulse required for one

year is given by.

AH =

where M T =

M

n. -'-
1

V =

=

MTXVX

i= 22

Mtn i
i=13

2
Mass of meteoroids of magnitude i , lb- sec -ft

Number of meteoroids of magnitude i to strike the

spacecraft in one year (see Table 11-6)

Velocity of meteoroids (see Table 11-5), ft/sec

Distance from center of mass to center of pressure, ft

Substituting the numerical values given in Table 11-6 into the above expression and

solving for M T yields 1.85 x 10 -3 gm-sec2/cm. From Table 11-5 the average velocity

of the particles in the magnitude range from 13 to 22 is approximately 20 km/sec.

Referring to Section 13.5.3, the distance from the spacecraft center of mass to the

center of pressure is _2.52 + 0.82 = 2.63 inches or 0.218 feet. Substituting numerical

values and the appropriate conversion factors the angular impulse required for one year is:

H
-3 -3

= 1.85x10 x 2.2x 10

-2
= 5.82 x 10 lb-sec-ft.

x20x3.28 x103 x0.218

Comparing the angular impulse and momentum storage requirements for the gravity

gradient, aerodynamic drag, and solar pressure disturbance torques, with those

resulting from meteoroid impacts indicates that the latter are negligible.
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Since the Mission C orbit represents the worst case for meteoroid impacts, andit imposes

negligible requirements on the attitude control subsystem, Missions A and B were

considered negligible also.

ii.3.5 MAGNETIC FIELD

Torques will be exerted on the spacecraft due to the magnetic interaction of the earth's

ambient magnetic field with ferromagnetic materials and current circuits on the vehicle.

Thesemagnetic effects canbe considered in three groups: (1) permanent magnet effects,

(2) induced magnetic effects, and (3)current loops.

Ii. 3.5. 1 Governing Equations

Permanent magnetic effects result from components which act like permanent magnets. Some

of the more common sources are d-c motors and inductors of transformers which carry di-

rect current in their windings. Any ferromagnetic material can exhibit permanent magnetic

effects since all ferromagnetic materials have a finite residual flux density and a coercive

force. This material can become magnetized during fabrication, test, storage, etc., and re-

tain a portion of this magnetization after removal of the mao___etizing force. The magnitude of

the retained flux is a function of the geometrical shape of the ferromagnetic material, its re-

sidual flux and coercive force, and the magnitude of the magnetizing force. The permanent

magnetic torque is given by the fundamental equation

BVH
T = dyne-cm (8)

p 47r

where T

P

B =

H =

V =

Permanent Magnet Torque, dyne-cm

Internal Flux Density, gauss

External Field Intensity, oersteds

3
Volume, am .
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Inducedmagnetic effects result from a difference in the internally stored magnetic energy

in ferromagnetic materials as a function of position relative to anexternal magnetic field.

Where there is a difference in the stored magnetic energy, the ferromagnetic material will

align itself so that the stored energy is maximized. As the shapeof the material departs from

symmetry, the difference in stored energy increases. For example, a sphere of ferromagnetic

material will showno preferred orientation. A rod is not symmetrical and will orient itself

so that the axis of the rod is in the direction of the field. A sheetof material will orient

its plane parallel to the field. The greater the asymmetry, the greater the aligning torque

for a given volume of material. In addition to symmetry, a secondimportant criteria is

the magnetic characteristics of the material. The torque imparted by the stored magnetic

energy is"

BHV
= dyne-cm (9)TI 8 Ir

where TI =

B =

H =

V =

Inducedstored magnetic energy, dyne cm

Internal flux density, gauss

Internal field intensity, oersteds
3

Volume, cm

Thus, the material having the greatest flux density for the given field will produce the

greatest stored energy, or stated differently, the internal energy is proportional to the

permability of the material.

Currents flowing in a closed electrical circuit in a magnetic field will produce a torque.

This torque is proportional to the number of ampere turns in the loop andthe loop area.

The d-c componentof current is the only onewhich will produce a torque; the a-c

componentwill average out to zero. The basic equation for the torque produced by a

current loop is given by

T = 0.1 HAIN dyne cm
C

(10)
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where W ____

C

A =

I =

N =

H =

Torque produced by current loop, dyne-cm

2
Area of loop, cm

Current, amperes

Turns

External field intensity, oersteds°

The torque on the current loop will tend to align the loop with the magnetic field. Since

the spacecraft is not defined in detail it is impossible to account for all the potential

disturbance torques resulting from magnetic field effects. In this study only magnetic

torques associated with the thermionic generator current loop and the nickel solar

concentrator were considered.

11.3.5. 2 Numerical Calculations

Since the magnetic disturbance torques are directly proportional to the earth's magnetic

field strength, which is a function of altitude, the torques will first be estimated for the

325-nautual mile orbit (worst case) associated with Mission C, and then scaled down by

the field strength for Missions A and B.

The magnetic field intensity, H, in a 325-nautual mile orbit is approximately 0.3 oersteds.

The solar concentrator design presented in Section 8.3.1 would be made up of approximately

770 cubic centimeters of nickel. The concentrator is 50 inches in diameter and has a skin

thickness of 0. 015 inches which yields a diameter to thickness ratio of 3330. Assuming

that the concentrator were to come in contact with a magnetic field it would become

magnetized and for a D/t ratio of 3330 the saturation value of the internal flux density, B,

would be approximately 1300 gauss. Substituting numerical values into Equation 8 gives

the torque on the spacecraft resulting from permanent magnetic effects in the nickel solar

concentrator.

1300 x 770 x 0.3
T = = 23,900 dyne-cm

p 4 _r
-3

or 1.76 x 10 ft-lb
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This torque will be the result of random magnetization across the face of the concentrator

in a fixed but unknowndirection.

The torque imposed on the vehicle as a result of the magnetic field induced in the

concentrator from the earth's magnetic field is given by Equation 9. For an earth magnetic

field intensity of 0.3 oersteds and a concentrator D/t ratio of 3330the internal flux density

would be approximately 500gauss and the internal field intensity 0.15 oersteds. Sub-

stituting numerical values into Equation 9 gives

500 x 0.15 x 770
TI = 8r = 2290 dyne-cm

or 1.69 x 10 -4 ft-lbs.

This torque will attempt to align the plane of the solar concentrator parallel to the ambient

field.

The torque produced by the thermionic generator current loop can be approximated by

applying Equation 10. For the thermionic system design presented in Section 8, the

current loop would be approximately 5.5 feet long and assuming a 0.1-inch spacing between
2

leads the area of the loop would be (5.5 x 0.1/12) 6. 45 x 144 = 42.6 cm . At the design

point the thermionic generator current output is 42.2 amperes. Substituting numerical

values into Equation 10 yields:

W

C
0.1x0.3x42.6x42.2xl

-6
53.8 dyne-cm or 4. 1 x 10 ft-lbs.

This torque will tend to align the plane of the loop perpendicular to the ambient field.

The torques experienced in the 1000-nautical mile orbit(Mission A) will be approximately

35 percent of those calculated for the 325-nautical mile orbit. The mean distance from

the earth during the elliptical orbit will be equal to the semi-minor axis of the ellipse, or

11-34



10,250 nautical miles. The torques at this altitude will be assumedto be two percent of

thosecalculated for the 325-nautical mile case.

The information is now available with which the mass expulsion and momentum storage

requirements canbe computed. There will not be any cumulative disturbance torques due

to the permanent or induced mag_aeticeffects and therefore no mass expulsion requirements

are necessitated by them. The momentumstorage requirements will be calculated on the

basis that a constant torque equal to 70percent of the peak torque value is applied for one

quarter of an orbit (the torque polarity will be reversed after one quarter of an orbit}.

The current loop torques will be cumulative for those orbits that have a dark period.

This is becausethere is no current existing during the dark portion of the orbit and

therefore the momentumacquired during the daylight segment of the orbit will not be

cancelled by an opposite polarity momentumthat wouldhave resulted had there beenno

darkness.

Using the assumptions outlined abovethe momentum storage and mass expulsion require-

ments for each mission are computedbelow.

A. Mission A

The Mission A spacecraft has an orbit period of 124 minutes so the momentum storage

requirement is

Orbit Period

AH = 4 x (Tp+T I+T C ) 0.7x0.36

124 -3
4 60x (1.76+0.169+0.0041) xl0 x0.7x0.36

= 0.92 ft-lb-sec.
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The cumulative momentumin one orbit resulting from the current loop torque is

H
cum

Orbit Period
= ( 2 - Avg. Dark Period ) T C x 0.36

124 -5
= ( 2 - 26) 60x0.41x10 x0.36

• -3
= 5.17 x 10 ft-lb-sec.

The total impulse required for one year then is

AH
cum

H (per orbit) x number of orbits with dark periods
cum

5.17 x 10 -3 x 203 days x 11.6 orbits/day

= 12.3 ft-lb-sec.

B. Mission B

The Mission B spacecraft has an orbit period of 840 minutes so the momentum storage

requirement is

840 -3
AH = --x 60xl. 93 xl0 x0.7x0.02

4

0.34 ft-lb-sec.

The average dark period in the elliptical orbit is 20 minutes. The cumulative momentum

per orbit then as a result of the current loop torque is

H 840cum (- _ 20 ) 60 x 0.41 x 10 -5= - x 0.02

-3
= 1.97 x 10 ft-lb-sec.
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The total impulse required for oneyear then is

AH
cum

-3
1.97 x 10 x 295 days x 1.71 orbits/day

= 0. 993 ft-lb-sec.

C. Mission C

The Mission C spacecraft has an orbit period of 96.7 minutes so the momentum storage

requirement is

96.7 -3
AH = x60xl.93 x10 x0.7

4

= 1.96 ft-lb-sec.

The average dark period in the 325-nautical mile orbit is 36 minutes and there are no

orbits which do not involve a dark period. The cumulative momentum per orbit then as

a result of the current loop torque is

H = (96.__7 _36) 60x 0.41x 10 -5
cum 2

-3
= 3.03 x 10 ft-lb-sec.

The total impulse required for one year then is

-3
&H = 3.03 x10 x365days x14.9 orbits

eum
yr day

= 16.5 ft-lb-sec.

The angular impulse and momentum storage requirements resulting from the magnetic

disturbance torques are summarized in Table 11-7.
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If the nickel concentrator were replaced by an aluminum one, the only magnetic disturbance

torques would be due to the current-loop effects. The momentum storage requirements were

computed for this case using the same approach previously outlined except with the permanent

and induced magnetic torques, Tp and TI, respectively, equal to zero. These results are

also shown in Table 11-7. It is apparent from a comparison of the results presented in

Table 11-7 that if the nickel solar concentrator could be replaced by an aluminum one, the

magnetic disturbance torques would be greatly reduced.

TABLE 11-7. Angular Impulse and Momentum Storage Requirements Resulting

From Magnetic Torques

Control

Axis

Roll

Pitch

Yaw

Maximum Angular Impulse Requirements

Ft-Lb-Sec/Year

MISSION A

i000 NM

0

12.3

12.3

MISSION B MISSION C

200 by 25,000 NM 325 NM

0 0

0.99 16.5

0.99 16.5

Momentum Storage Requirements

MISSION A

1000 NM

0

(a) -3
0.92/1.92x10

0.92/1.92x10 -3

Ft-Lb-Sec/Orbit

MISSION B

200 by 25.000

NM

MISSION C

0

0.34/0.72x10 -3

0.34/0.72x10 -3

325 NM

0

1.96/4.17xi0 -3

1.96/4.17xi0 -3

Note

a - The second number given under the momentum storage requirements is
for the case when the solar concentrator is made from aluminum rather

than nickel
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11.3.6 ORBIT ECCENTRICITY

A spacecraft rotating aboutthe earth andaligned to a set of earth referenced coordinate

axeswill have to rotate at a rate equal to the rate of changeof the true anomaly of its

orbit. The rate of changeof the true anomalymust be a constant for a circular orbit in

order to satisfy Kepler's law. Whenthe orbit eccentricity is not zero, momentum must

be addedto or removed from the spacecraft in order to keep it aligned to its earth reference.

The spacecraft being considered in this study are all in earth orbits but they are aligned

to a semi-inertial reference (i. e., the sun). Since the spacecraft are not earth oriented,

there is no angular acceleration requirement aboutany of the principal axes whenthe

vehicle is tracking its reference. Therefore, there are no disturbance torques due to

orbit eccentricity.

11.3.7 SUMMARYOF ANGULARIMPULSE AND MOMENTUM STORAGEREQUIREMENTS

The momentum storage and angular impulse requirements may be determined by taking

the root sum squared of all the peak external and internal momentum disturbance sources

acting on the spacecraft. The root sum squarevalues are used to accountfor the fact that

thesepeak values will not occur concurrently.

The momentum storage requirements must be baseduponthe root sum squared of all

the peak momentum disturbance sources acting on each axis (pitch andyaw) of the

spacecraft. The momentum storage device chosenmust be capableof storing this

total momentum for at least oneorbit at which time the momentum may be unloadedby

mass expulsion devices. The total angular impulse requirement must be baseduponthe

impulse requirements for both axes. Sincethe peak momentum disturbance cannot occur

in both axes at the same time the root sum squaredof the pitch and yaw impulse require-

ments for each type of disturbance is thenequal to the total impulse requirement. There

would be someadditional impulse requirements associatedwith the initial stabilization

and acquisition sequence;however, these requirements shouldbe negligible in comparison

with the disturbance torque requirements.
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The angular impulse and momentumstorage requirements computedin the preceding

sections for the individual disturbance torques are summarized in Tables 11-8 and 11-9.

These tables include the effects of all the external disturbances andan assumedvalue

for the internal momentumsources (i. e., tape recorders, gyros, etc. ).

Table 11-8. Total Angular Impulse Requirements
For One Year (Pitch Plus Yaw Axes)

DISTURBANCESOURCE

Gravity Gradient

Aerodynamic Drag

Solar Pressure

Micrometeorites

Magnetics

Orbit Eccentricity

ROOTSUMSQUARED
TOTAL

ANGULAR IMPULSE REQUIREMENTSFT-LB-SEC/YR

MISSIONA
1000 NM

MISSIONB
200 by 25,000 NM

20.0

73.4

69.0

0

2.0

0

472

0

66.8

0

24.6

0

394 115.0

MISSION C

325 NM

772

0

44.8

0

23.0

0

588
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Table 11-9. Momentum Storage Requirements For

One Orbit (Pitch And Yaw Axes)

Disturbance Source

Gravity Gradient

Aerodynamic Drag

Solar Pressure

Micrometeorites

Magnetics

Orbit Eccentricity

Internal Disturbances

ROOT SUM SQUARED

TO TA L

Momentum Storage Requirements Ft-Lb-Sec/Orbit

MISSION A

1000 NM

-2
6.49x10

0

-3
8.52x10

0

(a)_3
O. 92/1.92x10

-2
5x10

0.92/0.09

MISSION B

2 00by 25,000 NM

-2
2. OxlO

,2
5.87x10

-2
5.68x10

0

-3
0.34/0.72x10

0

-2
5x10

0.35/0.1

MISSION C

325 NM

-2
8.2xi0

14.7xi0 -3

4.1xlO -3

0

-3
1.96/4.17x10

0

-2
5x10

2.0/0.10

Note

(a) The second number given is for the case when the solar concentrator

is made from aluminum rather than nickel.

Now that the type and magnitude of the disturbance torques have been identified ,a method

for handling the imposed angular impulse and momentum storage requirements can be

considered.

ii. 4 ATTITUDE CONTROL TECHNIQUES

How the attitude control subsystem performs its functions depends primarily on the

technique chosen for the fine pointing control. The fine pointing control not only provides

the sun orientation requirements ,but is generally an integral part of maintaining the space-
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craft attitude during the shadow period, reorientation of the vehicle after each shadow period,

and initial stabilization and orientation of the spacecraft. For this reason the first step is

to select the fine pointing control technique to be used.

An additional area to be considered, which is not always linked with the fine pointing

control, is the means of despinning the spacecraft if the requirement exists. The

IMPROVED DELTA DSV-3E launch vehicle has been chosen for Missions A and B and

since it has a spin stabilized third stage, there is a requirement to despin the spacecraft

in these two cases. The Mission C spacecraft uses the IMPROVED DELTA DSV-3H which

does not employ a spin stabilized final stage and there is no requirement to despin the

vehicle.

The various techniques for performing the fine pointing control and despinning the space-

craft are considered below and a method selected for this application.

Ii. 4.1 FINE POINTING CONTROL

The fine pointil_ control must be able to align the spacecraft roll axis (same as solar

concentrator optical axis) within + 0.1 degree of the sunline (whenever the sun is visible)

for a mission design life of one year. To accomplish this the system must remove the

momentum from the vehicle which accumulates due to the disturbance torques.

The following three methods of fine pointing control were considered:

a. Cold gas-flywheels

b. Cold gas-derived rate limit cycle

c. Solar pressure.

Each of these approaches is discussed below with the selected technique considered first.
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11.4.1.1 Cold Gas-Flywheel

The method selected for the fine pointing control of the roll axis to the sunline is the

cold gas-flywheel technique. With this method flywheels are used to store the momentum

imparted to the spacecraft by disturbance torques, and cold gas expulsion is used to unload

the flywheels when their momentum storage capacity is reached. This method was selected

because it is a very efficient one for dealing with cyclic disturbance torques, can readily

maintain the precise accuracy requirements needed, has proven flight experience, and

makes good use of its basic components for initial stabilization of the spacecraft. A

detailed description of this control system and its mode of operation is included in

Section 11.5.1.1.

11.4.1.2 Cold Gas - Derived Rate Limit Cycle

This control scheme utilizes a position error sensor and cold gas expulsion torquing

elements. Damping is obtained by feeding back pseudo rate information and combining

it with the sensor output. This pseudo or "derived rate" information is obtained by

integrating the vehicle's control acceleration when it is present. The theory is that the

control torques are much larger than the disturbance torques, and thus the vehicle's

angular rate is solely a function of the on time of the control jets. The control jets cause

the vehicle to have a constant acceleration and this acceleration may then be integrated

to obtain the instantaneous rate. This integration is accomplished by feeding the pneumatic

solenoid actuation signal into a lag network, the output of which is then combined with the

position sensor error signal (see Figure 11-5). The lag network output does not represent

the angular rate unless the time constant of the network is large compared to the time

between jet firings. The operation of this system is such that the spacecraft operates at a

limit cycle rate, moving from one side of the pneumatic deadband to the other side (see

Figure 11-6).

As shown in Section 11.3.7, the magnetic disturbance torques represent the largest cyclic

torque acting on the vehicle. To maintain an optimum gas-use efficiency, it is desirable

to have a limit cycle in which gas is discharged at one limit only (i. e., the torque impulse
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of the pneumatic jets just balance the torque impulse of the disturbance). This is a 100

percent efficient limit cycle since the theoretical minimum quantity of gas is being used

(see Figure 11-7).

THRESHOLD

DETECTOR

LAG

NETWORK

POSITION

SENSOR

Figure 11-5.

I

Figure 11-6.

l PNEUMATIC

SYSTEM

Block Diagram of Derived-Rate Control System

(VEHICLE RATE)

I
PNEUMATIC
DEADBAND

8

(VEttIC LE ATTITUDE)
ERROR

Limit Cycle Operation With No Disturbing Torques

(VEHICLE RATE)

I I

_'-PNEUMATIC DEADBAND _

_ (VEHIC LE ATTITUDE)
v ERROR

Figure 11-7. Optimum Limit Cycle Operation With Constant Disturbing Torques
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The optimum limit cycle may be found by integrating the following equation:

T = I e

where

W Disturbance torque about the controlled axis

Moment of inertia about the controlled axis

ee

0 Angular acceleration about the controlled axis.

Integrating Equation 11 with respect to time gives

• T "
e - t+8_

I 0

Integrating once more,

T t 2 "
0 = 1/2 _ + 0o t + 0 °

Eliminating t by means of combining Equation 12 and 13 results in

I " )2 i( o- %) = 1/2 ¥ (o- oo + 0o (% - %)¥
where

O = Half of the pneumatic deadband
O

0

0 =

%=

Instantaneous attitude error about the controlled axis

Instantaneous rate about the controlled axis

Optimum limit cycle rate•

The objective is to have the instantaneous rate, 0 , equal zero and the instantaneous

attitude error equal ( -0 ° ) at the maximum excursion point ( see Figure 11-7 ),

= )2 I2o0 1/2 ( °o ¥

(11)

(12)

(13)

(14)

(15)

The maximum disturbances, as shown in Section 11.3.5, are due to magnetic torques and
-3

may be considered to be an average magnitude of 1.4 x 10 ft-lb. The fine pointing
-3

requirements dictate a pneumatic deadband of + 0.1 degrees. Setting T = 1.4 x 10 ft-lb,

0 ° = 0.1 degrees, and I = 35.2 slug-ft 2 into Equation 15 and solving for 0o,
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1/2

= (4xl.4x10 -3x0.1)8o \ 3"5.2x 5_.3 = 0.53 x 10 -3 rad/sec (16)

or 0.03 deg/sec

Substituting this value of O (in radians/second) into Equation 12 and solving for t yields
o

13.3 seconds. A limit cycle period of 26.6 seconds is completely impractical since it

would necessitate over one million solenoid firings for the one year mission life and pre-

sent state-of-the-art limits solenoid operations to approximately 50,000. In addition, the

weight of the gas required would lie completely out the realm of practicality.

It should be pointed out that even if the magnetic disturbance torques were made negligible

by using an aluminum rather than a nickel solar concentrator, the cold gas-derived rate

limit cycle approach still would not be practical because of the excessive number of solenoid

firings. Assumung the magnetic disturbances were negligible, the next most significant

disturbance is that due to gravity gradient. The average gravity gradient torque for the
-5

325-nautical miles orbit is 2.7 x 10 ft-lb. Substituting this value of torque into Equations
-4

12 and 15, the optimum limit cycle rate would be 41.9 x 10 degrees/second and the time

between solenoid firings would be approximately 192 seconds. This condition would require

over 160,000 solenoid firings per year which is still over three times greater than the

present state-of-the-art capability.

11.4.1.3 Solar Pressure Control Systems

Two solar pressure control schemes were considered for the fine pointing mode of operation.

Both of these schemes require that the spacecraft center of pressure and center of mass

both lie along the sun pointing roll axis and the center of mass is located closer to the

sun side of the vehicle than the center of pressure when the solar concentrator is aligned

to the sun. This construction will cause solar radiation pressure to always exert restoring

torques on the vehicle. The difference between the two approaches is in the method of

providing damping.
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A. S_lar Pressure-Balancing Vanes

With this method the spacecraft is balanced by adding motor driven movable surfaces at

the end of a large moment arm, such as the ends of the solar paddles. When the position

error increases to a preset value due to disturbance torques, a restoring pneumatic

jet would fire and in so doing would signal a balancing vane to move a fixed increment.

In this manner, the solar pressure force would balance the disturbance force after a number

of oscillations of the limit cycle. An additional surface is added to each balancing surface

for the purpose of damping; these surfaces are operated by means of bi-metallic thermo-

mechanical actuators which adjust surface position through a time lag.

This method is most practical when the disturbance torques experienced by the vehicle

are relatively constant and approximately the same magnitude as the solar radiation

pressure torques. As shown in Section 11.3 this is not the case for this application,

since the magnetic disturbance torques are cyclic and are several magnitudes higher than

the solar pressure torques. Another disadvantage of this scheme is the complete loss of

closed-loop control when the vehicle enters the shadow period. In addition it is not felt

that this method could maintain + 0.1 degree orientation accuracy because of its slow

response characteristics.

B. Solar Pressure-Fluid Flywheel

This control approach appears more feasible than the balancing vane technique since it

has momentum storage capability which makes it better suited to handling cyclic torques.

This system consists of a fine sun sensor connected to the pump of a fluid flywheel. When

disturbance torques move the spacecraft off attitude null, the attitude error is sensed by

the fine sun sensor and current is delivered to the pump. The polarity of the electrical

connections to the pump are such that the flywheel will generate momentum to counteract

the effect of the disturbance torque and move the vehicle back towards attitude null. Since

the spacecraft's center of mass is required to be closer than the center of pressure to the
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sun side of the vehicle, solar radiation pressure will also exert a restoring torque back

towards attitude null. Thus the disturbance momentum, imparted to the vehicle and

stored in the fluid flywheel, may be dumpedby using the external torques due to solar

radiation pressure.

This method is not acceptablefor fine pointing in this application for the following reasons:

ao The solar radiation pressure must have the capability of dumping the cumulative

disturbance momentum that is acquired each orbit. The major source of

cumulative disturbance momentum is the gravity gradient for the Mission A

and C orbits, and aerodynamic drag and gravity gradient for the Mission B

orbit ( see Section 11.3.7 ). The solar pressure restoring torque is proportional

to the distance between the center of pressure and the center of mass multiplied

by the sine of the attitude error angle ( which must be maintained at a value less

than 0.1 degrees). The elliptical orbit associated with Mission B would provide

the most favorable conditions, since for a short portion of the one-year life there

would be no dark periods occurring and the total 14 hour orbit period would be
-2

available to accumulate the necessary 9 x 10 ft-lb-sec of momentum resulting

from gravity gradient and aerodynamic drag. Calculations for this case indicate

that the center of pressure would have to be hundreds of feet behind the center of

mass in order to have the cumulative disturbance torques cancelled in one orbit by

solar pressure. Obviously this represents an impractical situation.

b. Since a cold gas mass expulsion system would still have to be incorporated

on the vehicle for initial stabilization, there would not be any substantial savings

in the number of components required.

c. There is much more flight experience available on motor driven flywheels than

there is on fluid flywheels.
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Ii.4.2 SPACECRAFT DESPIN

If the final stage of the launch vehicle is spin stabilized, as it is in the Mission A and B

cases, the spacecraft spin about the roll axis after third stage cutoff will have to be

reduced. Four techniques for accomplishing this were considered.

a. Solid propellant rockets

b. Cold gas (separate blow down tank)

c. Cold gas (high roll torque level on main tank)

d. Yo-Yo.

A description of each of these approaches follows.

11.4.2.1 Description of Despin Techniques

A. Solid Propellant Rockets

Two solid propellant rockets ignited by an electrical impulse signal to two redundant squib

ignitors could provide the angular impulse for despin. The two rockets would be mounted

on the vehicle's exterior surface or on the adapter between the final launch vehicle stage

and the spacecraft. If they were located in the latter position despin would have to occur

before separation.

Solid propellant rockets provide a proven, simple method for despin with high reliability

when using redundant ignition squibs. Expense associated with qualifying the rockets is

much higher than that associated with the other despin methods. Another disadvantage

of solid rockets is that they provide theworst despin tolerance of the techniques considered.

A typical despin tolerance for solar rockets is + 10 percent of the initial spin rate with

transverse rates of several degrees per second due to thrust vector and center of gravity

tolerances.
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B. Cold Gas (Separate Blow Down Tank)

In this approach a cold gas storage tank, separate from the attitude control tank, would be

charged with enough gas to despin the spacecraft. No pressure regulator would be used and

despin would be initiated by an electric signal to a redundant squib burst disc. The thrust

level would follow an exponential delay until the gas was exhuasted. The despin nozzles

would be located on the spacecraft near the center of mass plane.

This approach offers reliability as high, or higher, than solid rockets. Additional vehicle

complexity and weight is involved in mounting a second* tank and nozzle set on the space-

craft. Despin tolerance capability for this technique is approximately + 5 percent.

C. Cold Gas (High Roll Torque Level on Main Tank)

This technique is similar to the preceeding one except that the cold gas is supplied from

the main attitude control tank through the pressure regulator. A high thrust level would

be achieved by large nozzle areas. A timed electrical pulse would hold the solenoid valves

open for the period required to provide the required despin impulse.

This approach requires one extra solenoid valve and two extra nozzles in the attitude

control pneumatic system. These solenoids and nozzles would be sized for high thrust and

would significantly increase the probability of large gas leaks occuring.

D. Yo-Yo

Despin by the Yo-Yo method would be accomplished through torque exerted on the vehicle

by wire cables attached to weights which are allowed to unwind from the spinning space-

craft, or from around the final stage booster if despin is accomplished prior to separation

from the third stage. The cables would be held in the wrapped position until freed by an

electrical signal to two squib release mechanisms.

* One tank and nozzle set is required for the fine pointing technique chosen.
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The Yo-Yo method is a proven techniquewhich provides high reliability. This approach

requires additional structure in the form of a track to hold the cables, but the addedweight

is small. Despin tolerance with this schemeis very good and should result in negligible

rates after despin. This characteristic is due to the fact that sizing the weights and

lengths of the cables is solely dependenton the vehicle parameters, which may be accurately

measured, andnot on the initial spin rate.

11.4.2.2 Selected Despin Technique

The Yo-Yo despin method was selected because of its simplicity, proven reliability,

and the low residual rates it provides after despin. The Yo-Yo mechanism would

be mounted on the adapter between the third stage engine and the spacecraft. As a result

despin would have to occur before separation from the third stage of the launch vehicle.

11.5 ATTITUDE CONTROL SUBSYSTEM DESIGN

Having selected the attitude control techniques to be used, this section combines them

into the proposed subsystem design, describes how it operates, defines the major

components involved and their size, weight and power requirements.

11.5.1 DESCRIPTION OF SUBSYSTEM

A block diagram of the attitude control subystem is given in Figure 11-8. The attitude

control subsystem must control the spacecraft under three primary modes of operation-

a. Fine pointing control during the sunlight portion of the orbit

b. Initial stabilization and sun acquisition

c. Dark period operation and sun reorientation.

Each of these modes of operation are discussed further in the following sections.
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ii. 5. i. 1 Fine Pointing Control

The fine pointing mode of operation represents that portion of the mission when the space-

craft pitch and yaw attitude errors must be held to within + 0.1 degree. The pitch and yaw

fine pointing control systems would be functionally identical and are shown in Figure 11-9.

A fine sun sensor would be used as the primary attitude error sensing device. The sensor

output saturates for errors greater than one degree. A second attitude sensor would be

provided in the form of a thermal device that senses the position of the solar concentrator

focal point with respect to the thermionic generator aperture. This sensor would be used as

a backup for the fine sensor in the event that the concentrator optical axis and the fine

sensor axis become misaligned, or the thermionic generator was displaced off the

concentrator optical axis. The purpose for this backup sensor is discussed further in

Section 11.5.2.4.

The destination of the fine sensor output would be dependent on whether the spacecraft

was operating in a "continuous daylight" phase or in the normal "daylight-shadow" phase.

For daylight-shadow operation the fine sensor output would be used to update a rate-

integrating gyro. This would be accomplished by feeding a biasing current to the coils of

the gyro torquer that was pruportional to the difference between the gyro output and the

fine sensor output. In this manner, the fine sensor would cancel the inherent drift of

the gyro during the daylight portion of the orbit. When the vehicle entered the shadow

period the gyro would continue to control its attitude, although its drift would no longer

be cancelled by the fine sensor output. Thus the attitude error when the spacecraft emerged

from the shadow would be directly proportional to the gyro drift. The gyro output would then

be delivered to the input of a passive lead network, which v_ uld be used for rate damping.

The lead network would act as a differentiator and thus a measure of vehicle rate would

be provided, together with attitude error, to the control system torquing devices.

The "continuous-daylight" control scheme would differ from the daylight-shadow approach

only in the use of the rate-integrating gyro. In the continuous-daylight scheme, the fine
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sensor output would be brought directly to the lead network, and from there to the control

torquing devices. There would be no need for the gyro because position information would

always be available from the fine sensor, since there would be no shadow periods. This

continuous-daylight mode of operation could be used for approximately six months in the

Mission A (modified sun-synchronous orbit) case and approximately seventy days in the

Mission B (highly elliptical orbit) case. However, this technique could not be used in

the Mission C (325 nautical mile orbit) case since there are no shadow-free orbits The

advantage of providing a continuous-daylight as well as a daylight-shadow mode of operation

for Missions A and B would be greater reliability. Although the gyro selected for the

daylight-shadow mode would have a high probability of performing adequately for the

one year mission life, the reliability figure would be improved if the required operating

time was decreased. In addition, the power requirements would be decreased when the

continuous-daylight scheme was in use, since the pitch and yaw gyros would be turned off.

The only penalty incurred in providing the two control modes would be the added weight

due to the addition of several relays and some circuit and harness modification. The

change from one control mode to the other would be accomplished by ground-command.

The attitude error and rate information provided by the sun sensor and gyros would be

fed into the flywheel motor control and would thereby control the speed of the flywheel.

Fine attitude control about the pitch and yaw axes would be maintained by the method of

momentum-interchange between the spacecraft body and the flywheels. Since the

spacecraft would be a free body in space, any momentum that the spacecraft absorbe¢l

from external torquing forces would be maintained in an inertial sense (i. e., the total

momentum vector would remain in a fixed orientation in space and act through the space-

craft center of mass). The component of momentum about the spacecraft body axis would

be transferred to the flywheel by changing the steady state speed of the flywheel whose

spin axis was aligned parallel to the body axis. The acceleration of the flywheel would

be accomplished by exerting a torque on the wheel through changes in its control phase

excitation. This torque would be reflected in the opposite sense on the spacecraft body,

thereby resulting in a transfer of momentum from the spacecraft body to the flywheel.

Momentum would be transferred between the flywheel and the spacecraft up to the maximum
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storage capacity of the flywheel, which wouldbe limited by the no-load speedof the

flywheel motor and the inertia of the flywheel.

The sequenceof flywheel fine control would be as follows. As external torques were

applied to the vehicle, the spacecraft would begin to move off attitude null. This attitude

error would be sensedby the fine sensor and a signal applied to the control phaseof the

flywheel, causing it to increase in speedandapply a torque in a sense opposite to the

disturbance torque. In this manner, bodymomentum causedby disturbing torques would

be transferred to the flywheel. The attitude error would therefore be equivalent to that

error required to maintain the flywheel at a speedthat will cancel the body-absorbed

momentumdue to external torques. This momentum-storing technique operates most

efficiently onvehicles that experience cyclic disturbance torques; the flywheel momentum

storing capability is made larger than the maximum momentum imparted to the spacecraft

by these cyclic torques, thus no external torques needbe applied by the mass expulsion

devices to counteract thesedisturbances.

In addition to the cyclic torques on the spacecraft, there would also be cumulative

disturbance torques acting. As the momentumdue to the combination of cumulative

and cyclic torques absorbedby the flywheel increased, the wheel speedwould increase

to its no-load speed. At that point the flywheel could not absorb anyadditional momentum

and it is referred to as a "saturated flywheel". Once saturated the flywheel could not

respond to further increases in error signal andtherefore could not control the space-

craft attitude until desaturated ( slowed down). Momentumwould be removed (or dumped)

from the flywheel by the pneumatic reaction system. The action of expelled gaswould apply

anexternal torque to the spacecraft which would subtract from the total momentumabout

that axis. As the spacecraft rotated dueto this external torque, a changein position would

be noted by the fine sensor; this would decrease the signal to the control phase of the

flywheel and it would decelerate. The resultant torque due to the flywheel deceleration

would reduce the spacecraft body rate. Operation of the control loop would result in an

equilibrium condition of zero body rate with the spacecraft holding the steadypointing

error necessary to maintain the flywheel speedcorresponding to the spacecraft momentum

componentabout the body axis.
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11.5.1.2 Initial Stabilization and Sun Acquisition

As discussed in Section 11.4.2, the spacecraft would be despun in the Mission A and B

cases prior to separation from the final booster stage by the yo-yo technique. The residual

angular rates about the pitch and yaw axes after the despin maneuver would be removed by

a combination of cold gas _orquing and momentum storing. The residual rates about the

sun pointing or roll axis would be removed by cold gas torquing alone.

The sequence of events would be as follows. The yo-yo system would decrease the roll

rates to less than + 5 degrees per second, and leave maximum pitch and yaw rates of

tenths of degrees per second (due to misalignment of the yo-yo support track with the

control axes). Roll rate limiting would then be accomplished by using cold gas torquing

for as long as the roll rate exceeded a prescribed value; a rate gyro and a threshold

trigger circuit would be used to implement this technique (see Figure 11-10a). Since the

spacecraft would experience large cyclic disturbance torques, relatively large capacity

momentum storage devices must be used. The flywheels for Mission C and possibly

Mission A would have the capacity to store the total initial momentum due to residual

despin rates of up to several degrees per second. These flywheels would be held at zero

speed until enabled and thus would have their full momentum storage capacity at the time

of initial stabilization. Mass expulsion stabilizing techniques would not be required for

the MissionlC and possibly the Mission A cases. Further study will be necessary to

confirm operation in this manner. The elliptical orbit would use a control scheme employing

momentum wheels and mass expulsion for initial orientation. Disturbance torques would

not be a factor during initial stabilization due to the short period envolved. Pitch and yaw

attitude error information would be obtained from coarse sun sensors and combined with

rate information obtained from rate-integrating gyros used in the rate mode (see Figure

11-10b). Rate information would be provided by gyros since the coarse sun sensors would

not be operating in their linear region and thus would provide only a saturated output. The

rate and position information would be delivered to the control phase of the flywheel which,

by the method of momentum storing and mass expulsion momentum wheel unloading, would

move the spacecraft sun pointing axis towards the sun. The acquisition sun sensor would
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be used to sensewhen the sunwas within the field of view of the fine sun sensor and

determine when control shouldbe switched to this sensor. The signal from the fine sensor

itself could not be used since a null wouldbe obtainedfor both zero attitude error and very

large attitude errors.

The roll control loop, as shownin Figure ll-10a, would consist of a rate measuring gyro,

a threshold trigger circuit, and pneumaticcontrol. There would be no roll position control.

For economy as well as technical conveniencethe gyro used for the roll axis would most

likely be the same as those used in the pitch and yaw control loops. Determination of the

roll rate threshold would require a more detailed study, but it will probably be of the same

magnitude as the fine pointing mode rates existing in pitch and yaw in order to keep inter-

loop coupling at a minimum. Thelong-term rate error uncertainty wouldbe less than

_- 10 degrees per hour for the type of gyro being considered; if it is determined that the

rate threshold value need be less than 10 degrees per hour, an infrared sensor could

be incorporated that would sense the earth at least once per orbit. This infrared earth

sensor information would be telemetered to the ground and used to calculate the vehicle's

roll rate. The capability would be provided to bias out the long term error rate uncertainty

by means of ground command.

11.5.1.3 Dark Period Operation and Reorientation

During the orbit dark periods, the roll axis control would function exactly as it does during

the daylight portion since it does not depend on a sun reference. The pitch and yaw control

loops would remain in the fine pointing mode throughout the dark period. Since there would

be no sun information available, the fine sun sensor would relinquish its part as the prime

control sensing device to the position sensing gyro. Due to the fact that the sun sensor

would'no longer be biasing out the gyro, the gyro output may drift at the maximum short-

term rate of 0.1 degree per hour. Therefore, for the worst case condition of a two hour

dark period (Mission B), the vehicle would be 0.2 degree away from null upon emergence

from the dark. At this point, the fine sun sensor would again resume its prime sensing

function.
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ii. 5.2 DESCRIPTION OF COMPONENTS

A more detailed description of the components employed in the subsystem design and how

they would perform their function is included here. Since detailed component designs

are beyond the scope of this study the exact techniques employed in the component designs

are unknown. However, the component descriptions given here assume approaches

presently used in the design of similar components.

ii. 5.2.1 Flywheels

Flywheels would be used as the momentum storage devices in the proposed subsystem

design. Two identical flywheels would be required, one each for the pitch and yaw

control axes. The design characteristics of these flywheels are established in Section

11.5.4. 1 and are tabulated in Table 11-10. The flywheel requirements are state of the

art with similar flywheels having been developed for the Nimbus, OGO, and OAO space-

craft. The flywheels used on the OAO spacecraft are approximately the same size as those

needed for this application. The OAO flywheels are manufactured by Bendix Corporation

and have been flight qualified.

11.5.2.2 Integrating-Rate Gyro

The rate information required by the pitch, yaw, and roll axes for initial stabilization

and orientation, and the position information required by the pitch and yaw axes during

orbital park periods, will be provided by rate-integrating gyros. Three will be required,

oriented to provide independent outputs for the pitch, yaw, and roll axes.

The type of gyro deemed suitable would be the Kearfott C70-2565 Alpha series. Flight

experience exists on this type of gyro and sufficient running time has been accumulated on

it to ensure a high reliability for up to ten thousand hours of operation. This gyro is also

being considered for use on the Advanced Nimbus and OAO spacecraft. The null accuracy

-3
in the rate mode is better than 5x10 degrees/second and in the position mode is
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approximately 10 arc seconds. The maximum dynamic range of the gyro in the rate mode is

+ 4.5 degrees per second and is :e 6 degrees in the position mode (the dynamic range re-

quired will most likely be less than this).

11.5.2.3 Sun Sensors

Three types of sun sensors are employed in the subsystem design: (1) coarse sensor,

(2} fine sensor, and (3} acquisition sensor. These three types of sun sensors are

discussed below.

A. Coarse Sun Sensors

The function of the coarse sun sensors is to provide pitch and yaw attitude control signals

for orienting the roll axis to the sunline. The coarse sensors would provide complete

spherical coverage in each axis and should not require a null accuracy of better than

* i degree. Four coarse sensors would be used operating in pairs to provide pitch and

yaw information. Each individual sensor would have a hemispherical field of view. The

coarse sensors would be mounted on the sides of the spacecraft. The two sensors making

up a pair would be mounted opposite each other as shown in Figure 13-3 in Section 13.

The design characteristics considered most desirable for the coarse sun sensors are:

simplicity, optimum transfer function (maximum slope) in the vicinity of null, and minimum

interference from earth reflected sunlight. Sensors having these characteristics have been

developed and flown on numerous space vehicles.

B. Fine Sun Sensor

The function of the fine sun sensors would be to provide pitch and yaw attitude control

signals for precise sun orientation. The fine sun sensors would provide a field of view

of approximately ± 5 degrees and should have a null accuracy of better than ± 1 minute of

arc about each control axis. This requirement is close to that of the OAO fine sun sensors

which have a field of view of ± 10 degrees and a null accuracy of ± 3 minutes of arc. If the
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requirements specified for this application could not be met, a fine sun sensor with a

smallel" field of view could be used in conjunction with an intermediate sensor to be used

between the coarse and fine sensor control modes. However, it is felt that the require-

ments specified could be fulfilled without the use of an intermediate sensor. The sensor

output need be linear only to + 1 degree.

C. Acquisition Sensor

The purpose of the acquisition sensor is to indicate when control should be switched from

the coarse to the fine sun sensors. The signal from the fine sensor cannot be used for this

purpose because a null will be obtained for both zero attitude error and large attitude errors.

The acquisition sensor would perform this function by providing a constant output signal

whenever the sun is within the field of view of the fine sensors, hence its field of view

would be the same as the fine sun sensors.

11.5.2.4 Fine Thermal Sensor

The proposed subsystem design is very dependent on accurate alignment of the fine sun

sensor axis with the solar concentrator optical axis. This can be done with a high degree

of precision before launch but should the two axes become n-dsaligned or should the

thermionic generator be displaced off the concentrator optical axis after launch the

thermionic generator performance could be seriously affected. This misorientation or

displacement could be brought about by thermal expansion, deformation under launch

loads, etc.

A potential way around this problem would be to sense the energy distribution at the

thermionic generator aperture opening and attempt to maximize the energy entering the

aperture rather than sensing the sun and depending on proper alignment between the

sensor axis, the solar concentrator axis, and the thermionic generator aperture opening.

In this manner the problem of misalignment between the sensor axis and the concentrator

optical axis would be eliminated and if the thermionic generator were displaced off the
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concentrator optical axis the thermal sensors would causethe solar concentrator to be

misoriented so that the concentrator focal spot fell on the aperture opening. Of course the

solar concentrator performance wouldbe degraded somewhatdependingon the amount of

misorientation required. However, it would be better to accept this degradation and provide

someenergy to the thermionic generator than to provide essentially no energy at all, as

would occur for the proposed design should the sensor and concentrator axes becomebadly

misaligned or the generator displaced off the concentrator optical axes be sizeable.

The problem was considered in detail in Appendix P and the results indicate that the

thermal sensor approachwould provide muchhigher thermionic system performance,

should relatively large values of misalignment error or generator displacement be en-

countered, than could be obtainedwith the fine sun sensor scheme.

Since noknown developmentwork has been doneon the thermal sensor approacha proven

conceptcannotbe presented but an approachwhich appearspromising is described here.

The thermal sensor would consist of a circular array of four thermocouples mountedon

the thermionic generator heat shield at 90-degree intervals around the aperture opening.

Since even under normal operating conditions the fringe energy in the focal plane implinges

on the heat shield, this energy would provide a thermal input to the thermocouple sensors.

The optimum distance for locating the thermocouples from the aperture center is discussed

in Appendix P. These thermocoupleswould provide a millivolt output in relation to the

energy flux implinging on them. These voltages would be used as error signals to the

attitude control subsystem logic. The sensors would provide an error signal that would

attempt to locate the solar concentrator so that the sensors received equal energy inputs

and, as shownin AppendixP, this situation leads to near maximum energy input to the

generator for the amountof concentrator misorientation required.

Of course, the major question in this approach is what to use for the thermal sensors.

Thermocoupleswere suggestedbecausethey appear to be the most logical sensor to

use at this point. The life of the thermocouples at the expectedhigh temperatures might

prove to be a problem. This potential problem was discussed with the General Electric
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Instrument Department and they recommendedthe use of tungsten 5 percent rhenium/

tungsten26 percent rhenium for the thermocouplematerial. They have beenmaking

W-5Re/W-26Re thermocouples in a molybdenumsheathwith beryllium oxide insulation

for RCA. In RCA's application these thermocouples are operated in furnaces at 3000°F

and atmospheric pressure with a dewpoint between -20 to +70. Through February 1965

these couples hadbeen in continuousoperation for over 650(Ihours. The couples are

checkeddaily against a pyrometer reading and the shift was less than 10°F over this

period (a repeatability of 0.33 percent). Although certaintly not conclusive, these results

indicate that it may be possible to obtain the required life and repeatability with thermo-

couples.

If a system of this type could be developed, it is proposed that it be included as a back

up to the fine sun sensor. Assuming thoroughspace simulation testing of the spacecraft

before launch, it is felt that assurance canbe established that proper alignemnt will

prevail in spacebetweenthe fine sun sensor axis and the concentrator optical axis, and

the thermionic generator aperture and the concentrator axis. However, having the

thermal sensor as a back up would provide a safety factor should large alignment or dis-

placement errors be encounteredandwould also provide anopportunity to evaluate the

thermal sensor approach in the space environment. Switching from the primary fine sun

sensor to the back up thermal sensor andvice versa would be accomplishedby ground

command.

11.5.2.5 Roll Rate Infrared Sensor

An infrared sensor with a narrow field of view would be used to measure the spacecraft's

roll rate for the purpose of updating the roll rate gyro. This would be accomplished only

if it was determined that the gyro drift could not be tolerated. The method of operation

would be as described below.

Four infrared earth sensors would be located on the spacecraft's periphery, spaced 90 de-

grees apart, with the center lines of their fields of view perpendicular to the roll axis.

The roll of the spacecraft would provide the necessary scanning motion and a signal would
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produced whenthe earth was in the field of view of one of the sensors. Measurin_ the

time period betweenoutput signals on two adjacent sensors would provide a measure

of the spacecraft roll rate. Four sensors would be necessary to insure that a roll rate

measurementwas obtainedduring each orbit. The output of each sensor would be recorded

and stored in the telemetry subsystemfor playback over the appropriate ground station.

Using the information obtained from these infrared sensors, the roll gyro drift rate could

be biased out by applying the necessary bias step voltage. This would be accomplishedby

ground command.

11.5.2.6 Cold-Gas Pneumatic System

A cold gas propulsion system, such as the one proposed for this application, is one in

which heat is not employed to increase the specific impulse of the gas. The gas is

stored on board the spacecraft at ambient temperature. Because of the low density of

most gases, and the vehicle volume and tank mounting considerations, the gas is generally

stored at pressures of 2500 psia and above. A pressure of 3000 psia was used in this

study for sizing the tank.

The schematic of the pneumatic system is shown in Figure 11-11. The system consist

of the following hardware:

a. A fill valve which is used to charge the system to its initial pressure

b. A check valve which prevents a back-flow of gas

c. A gas storage tank which is the reservoir for the activating gas

d. A high pressure transducer which is used for telemetry monitoring of gas

consumption

e. A tank solenoid valve which provides a redundant safety feature to prevent

excessive gas leakage (This solenoid is open in parallel with any other control
solenoid. )

f. A pressure regulator used to provide a constant pressure to the nozzles

g. A low pressure transducer used for telemetry monitoring of the pressure

regulator
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h. Control solenoid valves which regulate the gas flow

i. Nozzles which produce the required thrust.

The pneumatic subsystemwill be used alongwith the flywheels for initial stabilization in

the Mission A and B casesbut it appears that the flywheels alone will handle the Mission C

case. In all three missions the pneumaticsubsystemwould be usedto unload the flywheels

when they become saturated and to limit the spacecraft roll rates. Pneumaticswould not

be required for reorientation after the spacecraft emerges from the earth's shadowsince

this would be handledby the flywheels.

Size and weight estimates for the gas andgas tank for each mission are presented in

Section 11.5.4.2.

ii. 5.3 ALLOCATION OF POINTING ERROR

The fine pointing control must align the spacecraft sun pointing axis to within + 0.1 degree

of the sunline. This requirement would be satisfied with a pitch and yaw attitude error

of + 6/V_" minutes of arc. The allocation of errors (based on one _r values) contributing

to a total loop inaccuracy is defined below.

The fine sun sensor can be made with an accuracy of several seconds of arc, but a sensor

with this degree of accuracy must inherently have a small field of view. As a compromise

between accuracy requirements and field of view, a sensor with a null uncertainty of one

minute of arc has been chosen. This null uncertainty takes into account mounting mis-

alignment, temperature effects, and manufacturing imperfections. The preamplifier

and signal amplifier would contribute 0.5 minutes drift and 0.05 minutes noise. The input

axis of the integrating-rate gyro used in the fine pointing mode can, in itself, be aligned to

the control axis to less than eight minutes of arc. In addition to the gyro's misalignment,

it may drift by several tenths of a degree over an extended period. These misalignment

and drift errors will not enter into the fine pointing control loop accuracy sin('e the gyro
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is slaved to the fine sun sensor and all errors will be biased out by having the sensor torque

the gyro. The only contribution of the gyro to the error allocation will be that due to noise,

which would be approximately 0.2 minutes of arc. Tha electronics associated with the

fine momentum control would contribute i. 5 minutes of error due to drift and 0.15 minutes

due to noise. Static friction in the momentum wheel will contribute a threshold error of

0.15 minutes of arc.

In general the drift errors will not add algebraically, thus they will be combined on a root-

sum-squared basis and added to the error due to noise. On this basis, the root-sum-squared

error is approximately 1.9 minutes, and the total loop error would be 2.3 minutes per axis.

As a result of the cumulative disturbance torques acting on the vehicle, a gradual increase

in flywheel speed mus_ occur as the stored momentum builds up. This increase in speed

must also be accompanied by a gradual increase in spacecraft attitude error in order to

allow the sensors to supply the increased motor voltage required. The actuator error must

be added to the above error allocation. Therefore, the loop gain must be adjusted so that

the flywheel speed at which momentum unloading b_gins occurs when the attitude error

is 2 minutes of arc (i. e., 6/_"_ - 2.3). It is unlikely that both the pitch and yaw axes

would have 6/_'_ minutes error at the same time and therefore, on a one a basis, the

actual roll axis error with respect to the sunline would be 4.05 min,_tes.

This error allocation was based, to a large extent, on experience obtained on the Orbiting

Astronomical Observatory spacecraft, which has a coarse pointing accuracy of + 1 minute

of arc and holds the attitude to within + 15 seconds of arc for not less than 50 minutes. The

fine pointing mode aligns the optical axis to within 0.1 seconds of arc. This system uses a

cold gas-flywheel type control scheme of the same type proposed for this application.

ii. 5.4 SIZING OF ATTITUDE CONTROL SUBSYSTEM

There are two principal components to be sized in connection with the attitude control

scheme proposed: (1) the size of the momentum flywheels, and (2) the quantity of gas
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required by the pneumatic system. Th_ angular impulse and momentum storage require-

ments, which define thesequantities, were computedin Section 11.3 and are summarized

in Tables 11-8 and 11-9. Using theseparameters the size of the flywheels and the volume

of cold gas required is determined below.

11.5.4.1 Flywheel Size

Table 11-9 provides a tabulation of the flywheel mon,entunn storage requirements. This

table includes the effects of all the external disturbances and an assumed value for the

internal momentum sources (i. e., tape recorder and gyros). The main source of

disturbance torque is the magnetic field and its effects on the nickel solar concentrator.

Since these torques on the spacecraft are not related to the vehicle inertias, the flywheels

will seem oversized in comparison to other vehicles of simular configuration and inertia.

This large ratio of momentum storage capacity to vehicle inertia would be utilized during

the initial stabilization and orientation sequence. The parameters governing the flywheel

size could be greatly reduced, as indicated by the results in Table 11-9, if the concentrator

was fabricated from aluminum. However, for reasons discussed in Section 8.3.1, the

design proposed in this study is based on a nickel concentrator.

Consider the Mission A case. From Table 11-9 the momentum storage capacity required

for the pitch and yaw flywheels is 0.92 ft-lb-sec/orbit. The flywheel design parameters

are selected below.

11-70

a. Momentum storage capacity = 1.3 ft-lb-sec

(A 25 percent safety factor is provided at no-load speed)

b. Stall torque = 2.0 ounce-inches

Momentum @ no load speedc. Time constant =
Stall torque

do

1.3 x 16 x 12

2.0

= 125 seconds

No load speed = 1250 rpm



e. Synchronousspeed = 1500 rpm

f. Power at stall = 2 (stall torque) (synch speed)
7.04

2 x 2 x 1500

16x 12 x7.04

= 4.5 watts

g. Power at no load = 0.6x(power at stall)

= 0.6 x4.5

= 2.7 watts

h. Based on past experience a flywheel with these characteristics would

weigh approximately 5.5 pounds.

Similar calculations were performed for the Mission B mid C cases and the results for all

three missions are summarized in Table 11-10.

Table 11-10. Flywheel Design Parameters (Pitch and Yaw Axes

PARAMETERS MISSION A MISSION B MISSION C

1.3 0.5 2.5Momentum Storage

Capacity, ft-lb-sec

StallTorque, oz-in

Time Constant,

seconds

No Load Speed, rpm

Synchronous Speed,

rpm

Power at Stall,watts

Power at No Load,

watts

Weight, lb

2.0

125

1250

1500

5.5

2.0

48

1250

1500

4.5

2.0

240

1250

1500

8.5

11.5.4. 2 Pneumatic System Size

Table 11-8 tabulates the angular impulse requirements for the mass expulsion system. A

cold gas pneumatic system was selected to satisy this requirement. The most common
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gases used in this type of system are nitrogen or Freon-14. Nitrogen was assumed in

this study with a specific impulse of 70 seconds. The weight of gas required to provide

a given angular impulse requirement is defined by

AH
W -

g I r
sp

where

W = Weight of gas, lb
g

AH = Angular impulse requirement, ft-lb-sec

I = Specific impulse of gas, sec
sp

r = Radius of nozzle moment arm (distance from the gas nozzle to the

spacecraft center of mass), ft.

From Figure 13-3 in Section 13, the radius of the nozzle moment arm, r , is 28 inches.

For Mission A the total angular impulse requirement given in Table 11-8 is 394 ft-lb-sec/yr.

Substituting numerical values into the above equation the required gas weight is

394 x 12
W -

g 0.80x70x28
- 3.0 pounds

A twenty percent safety factor is included in the above computation to allow for the roll axis

requirement and any gas leakage.

The gas tank weight may be determined from the following equation which assumes a

tank made from 6AL-4V Titanium with a burst-to-operating pressure ratio of two and a

storage temperature of 530°R.

W T = 0.0238 Z RW g
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where

W T = Weight of gas tank, lb.

Z = Compressibility factor for gas

= 1.05 (for N 2 at 3000 psi)

R = Gas constant, ft/°R

= 55.13 ft/°R for nitrogen

W = Weight of gas, pounds.
g

Substituting numerical values gives

W T = 1.38W = 1.38 x3.0 = 4.1 pounds.g

The volume of gas can be computed from the perfect gas law equation

PV = W RT
g

where

P = The tank pressure, lb/ft 2

V = The tank volume , ft 3

T = The gas storage temperature, OR.

For a tank pressure of 3000 psi and a storage temperature of 530°R the required tank

volume is

V = 3.0x55.13 x 530 = 0.206 ft 3.
3000 x 144
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Assuming a spherical tank, the tank radius, r, is given by

3 3V 3 x 0.206
r -

4_r 417
- 0.049

r = 0.367 ft or a diameter of 8.8 inches.

These calculations were repeated for the Mission B and C cases and the results for all three

missions are summarized in Table 11-11.

Table 11-11. Pneumatic System Design Parameters

PARAMETERS MISSION A MISSION B MISSION C

Angular Impulse

Requirements, ft-lb-sec/yr

Weight of N2 Gas Required, lb

394

3.0

115.

0.88

Weight of Gas Tank, lb

Volume of Gas Required, ft 3

Diameter of Tank, in

4.1

0.2

8.8

1.5"

0.06

5.8

588

4.5

6.2

0.3

I(}.0

Note

*Assumed to be the smallest practical tank weight.

11.5.5 Size, Weight and Power Requirements

An estimate of the size, weight and power requirements for the attitude control subsystem

components are presented in this section. These estimates are based on the sizing

calculations performed in Section 11.5.4 and on experience gained in the development of

the attitude control subsystems for the Nimbus and Orbiting Astronomical Observatory

spacecraft. Table 11-12 summarizes the size and weight estimates and Table 11-13 the

power requirements.
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Table 11-13. Power Requirements for Attitude Control Subsystem (a)

Components

Gyro (3)

Flywheel (2)

Control Electronics (3)

Logic Devices

AC and DC Power Supplies

(75 percent Efficiency)

Pneumatic Solenoids

Continuous Power

(Watts)

15

4

9

3

5

Peak Power

Duration-Minute s

TOTA L 36

Level-Watts

60

40

10 minutes
(b)

10 minutes (b)

0.25 minutes (c)

3.0 minutes (d)

Notes

at

b.

Co

d.

These estimated power requirements apply to Mission A, B and C.

Peak associated with the flywheel's demand for more power during the

reorientation phase after each shadow period.

Peak associated with unloading the flywheels.

Peak associated with reorienting the spacecraft when it emerges from
the earth's shadow.

ii. 6 SUMMARY AND CONCLUSIONS

The proposed cold gas-flywheel attitude control technique is particularly well suited to this

application because of the precise sun pointing accuracy necessary and the cyclic momentum

storage requirements. This approach to attitude control is considered present state of the

art having been used on the Nimbus and OGO vehicles and the hardware having been flight

qualified for the OAO spacecraft which is scheduled for flight in late 1965. On the OAO
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vehicle the coarse pointing requirement is + 1 minute of arc and the fine pointing mode calls

for an accuracy of 0.1 second of are. Therefore, the six-minute sun pointing accuracy needed

for the solar thermionic system can be provided using proven techniques.

A more detailed analysis of the disturbance torques is needed to realistically size the

attitude control subsystem. The disturbance torque estimates made in this study are the

result of a worst case analysis and are felt to be considerably more severe than what the

spacecraft would actually experience. As a result, the attitude control subsystem size and

weight estimates presented should be conservative (higher than actually required).

The magnetic disturbance torques represent the major momentum storage requirement as

shown in Table 11-9. If these requirements could be reduced the flywheels could be made

smaller with a resulting decrease in the weight and power requirements. Ways of minimizing

the magnetic disturbances are discussed below.

The permanent magnetic effects could be reduced significantly by fabricating the solar

concentrator from a non-magnetic material such as aluminum*. The possibility of either

electroforming or stretch forming an aluminum concentrator with the desired accuracy

should be investigated. If nickel must be used the permanent magnetic effects could be

reduced by demagnetizing the concentrator and subsequently preventing further magnet-

ization by avoiding close proximity to strong magnetic fields. Of course a lower limit on

demagnetization is set by the earth's magnetic field at sea level. In some cases, ff the

magnitude and direction of the permanent field is known, its effects can be reduced by

using small bar magnets of equal and opposite polarity. This approach might be used

for some of the small spacecraft components but does not offer promise for solving the

concentrator problem.

Like the permanent magnetic effects, the spacecraft induced magnetic effects would be

greatly reduced if the solar concentrator could be made from aluminum rather than nickel.

* The concentrator's contribution to the total spacecraft's permanent magnetic effects

would be zero if a non-magnetic material was used.
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Wherever possible, the induced magnetic effects can be reduced by making components

fabricated from magnetic material as symmetrical as possible.

Magnetic torques resulting from current loops can be reduced if twisted conductors are

used. By twisting the current carrying conductors upon themselves, the net area of the

current loop can be greatly reduced. This is a simple technique which is often used

effectively to reduce the magnetic effects of current loops. This technique should definitely

be used on the thermionic generator leads which carry relatively high current.

Even if the magnetic disturbance torques could be reduced by replacing the nickel solar

concentrator with an aluminum one, the other disturbance torques provide cyclic momentum

storage requirements of such magnitude that the cold gas-flywheel approach would still

represent the most attractive attitude control scheme for this application.
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SECTION 12

SPACECRAFT POWER SUBSYSTEM

12.1 INTRODUCTION

To properly evaluate the performance of the solar thermionics portion of the experiment,

it is necessary to have a separate spacecraft power supply; so there is no dependence on

the power generated by the thermionic generator. In this manner, if there were a degrada

tion or complete failure of the thermionic generator, the spacecraft would still be opera-

tional and the reasons for the failure could be evaluated. In addition, failure of the ther-

mionic generator would by no means put an end to the value of the experiment. Valuable

information could still be obtained from the orientation and solar concentrator subsystems

which will be instrumented to allow performance evaluation. Also, the secondary experi-

ments would yield valuable engineering and scientific data.

Silicon solar cells were selected for the spacecraft power supply for two reasons: (1) their

proven reliability in space, and (2) the fact that the spacecraft is required to be solar

oriented in order to conduct the solar thermionic experiment. Nickel-cadmium secondary

batteries were chosen to supply the cyclic energy storage requirements. Primary silver

oxide-zinc batteries are used to supply the power requirements associated with initial

stabilization of the spacecraft. Both of these types of batteries have demonstrated relia-

bility in space applications.

The performance estimates presented in this section are based to some degree on experi-

mental measurements made by the General Electric Spacecraft DePartment. These meas-

urements were not made in connection with this study, but rather on past contracts and

company funded programs.

12.2 RADIATION ENVIRONMENT

This section considers the radiation environment for the three orbits of interest and its

influence on semiconductor components.
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12.2.1 ENVIRONMENTALDESCRIPTION

The environment estimates given here consider three componentsof the radiation environ-

ment: (1) the trapped electron field, (2) the trapped proton field, and (3) the solar flare

protons. The estimates for the trapped electron and proton fields are based on data from

the Explorer 15satellite. These estimates, for three different orbit inclinations, are

given in Figures 12-1 and 12-2 for electrons andprotons respectively for attitudes up to

2500nautical miles. The figures show the daily average fluxes as determined from a B-L

coordinate computer program. *

The electron flux in Figure 12-1 is for the intensity of particles whose energy is greater

than 0.5 Mev. Since these are mostly particles from the Starfish experiment, they have

been normalized to January 1963. The electron energy spectrum assumed for the present

calculations, for all altitudes, is shown in Figure 12-3. This energy spectrum resulted

from the early beta decay of fission products.

The proton intensity distributions shown in Figure 12-2 are for those particles with energy

between 40 and 110 Mev. The energy spectrum assumed for the protons for all altitudes

is shown in Figure 12-4.

How applicable these electron estimates are for the 1967 to 1969 time period is questionable.

This is particularly so for altitudes below 1000 nautical miles. The electrons injected into

the magnetic field by the Starfish experiment are known to be decaying. The rate of decay

is a strong function of the magnetic shell (L-shell) in which the electrons are trapped. It

is very difficult to estimate the average orbital flux decay, particularly for highly inclined

orbits since many L shells are crossed on each orbit. In order to obtain a better estimate

*The B-L Coordinate System is the natural (magnetic) coordinate system presently used in

most descriptions of charged particle motion within several earth radii of the earth's

surface. It is a magnetic coordinate system, quite different from the polar coordinate

system because the magnetic field of the earth is irregular and not concentric with the

earth's center. B is the magnetic field strength and L is approximately equal to the dis-

tance to the equatorial crossing of one particular magnetic field line.
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of the average decay time for each orbit, the decay times of the fluxes encountered at each

point in the orbit should be weighed as a function of the integrated flux at each orbit point.

The assumption of a fission cnergy spectrum for the electrons is also questionable since

it is known that the decay of the electrons is resulting in changes in the energy spectrum of

these electrons as well.

The other environmental component of importance here is that due to solar flare protons.

Figure 12-5 shows the average yearly, free-space, flux of solar protons assumed for the

1967 to 1969 time period. The spectrum shape shown is similar to that seen on a number

2
of large, 3+ magnitude, flares. The particle intensity assumed (3x109 protons/cm /year,

E > 40 Mev) would correspond to the assumption that two 3+ magnitude flares, similar to

the May 10, 1959 event, would occur during any given year.

The above environment components have been used to define the environment for the spe-

cific orbits of interest here. For the 325-nautical mile, 30-degree inclined orbit, the flux

values in Figures 12-1 and 12-2 for the 29-degree inclination curve have been assumed.

Also, no solar flare protons are considered for this orbit since it is assumed that by virtue

of its low inclination and altitude the earth's magnetic field will effectively shield it against

the majority of solar protons.

For the 1000-nautical mile, 101.84-degree inclined orbit, the flux values in Figures 12-1

and 12-2 for the 60-degree inclination curve have been assumed. Since this orbit is highly

inclined and of relatively high altitude, one-half of the full, free-space, flux of solar protons

given in Figure 12-5 is also included in the yearly dose.

For the highly elliptical 200 by 25,000-nautical mile, 45-degree inclined orbit, the estimates

of Figures 12-1 and 12-2 cannot be used, since a significant portion of the orbital time is

spent out of the radiation belts. Here a special computer run of the B-L coordinate program

was required. • Figure 12-6 shows the results of such a calculation for the average daily

trapped proton flux. Although, a specific calculation was not accomplished for the electron
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component, it has been estimated that the average daily electron flux would be about 2x1011

electrons/square centimeter/day normalized to January 1963 and considering the computed

orbit trajectory in B-L coordinates. Also, the full free-space flux of solar protons given

in Figure 12-5 is included in the yearly dose for this orbit.

The average yearly particle dose for each orbit is summarized in Table 12-1.

Table 12-1. Summary of Yearly Particle Doses

(Particles/cm2/year)

Trapped Electrons

(E > 0.5 Mev)

Trapped Protons

(40 < E < 110 Mev}

Solar Flares

(E > 40 Mev)

325 NM

ORBIT

1000 NM

1.6 x 10151 x 1014

2 x 109 4.4 x I0I0

1.5 x 109

200 by 25,000 NM

7 x 1013

8x 107

3x 109

In order to assess the effect of this radiation environment on operating semiconductor com-

ponents, such as transistors and diodes, the total ionization due to these particle doses,

and also its ability to cause bulk damage (that is atomic displacements) in semiconductors,

is required. An estimate of the ionization dose, in terms of Rads (air) per year, for several

shield thicknesses is given in Table 12-2. In these calculations, the incident flux is assumed

to be isotropic and the shielding geometry is assumed to be a spherical shell. The calculated

dose is that at the center of this spherical shell and therefore represents the maximum dose

for this shielding configuration. Scattering of the incident flux is neglected. As can be

seen from these figures, the ionization dose is primarily due to the electron environment

up to a shield thickness of 4.0 grams per square centimeter. As pointed out below, the as-

pect of the environment (that is, the ionization) is very important as far as its effect on the

vehicle electronics is concerned. In order to conveniently assess the bulk damage in
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semiconductor electronics, the incident electron and proton radiation has been converted

to an equivalent fast neutron flux that would cause equal damagein semiconductors. This

is also shownin Table 12-2 in terms of equivalent fast neutrons/square centimeter/year for

several shield thicknesses. The assumptions for the shielding geometry are similar to those

for the ionization dosecalculations.

For this effect, the electron decayis not as important as for the ionization effects since the

protons cause most of the bulk damageas canbe seen from Table 12-2.

12.2.2 EFFECTS ONSEMICONDUCTORELECTRONICS

The main effects of ionizing radiation on semiconductor electronics, particularly transistors,

are the bulk damageeffects and the so-called radiation induced surface effects. The bulk

damageeffect is the disruption of the crystal lattice of the semiconductor material. In

transistors, this effect causes a decrease in carrier lifetime in the base region of the device.

The effect takes place whether the device is electrically active or not. The surface effects

phenomenon,on the other hand, is too_,e predominate when the devices are simultaneously

under electrical stress and exposedto ionizing radiation. This effect is due mainly to the

interaction of the ionized gas (in the hermetrically sealed transistor} with the semiconductor

surface.

Both of these effects (bulk and surface) caneffect the transistor gains quite drastically. In

addition, the surface effects can also alter junction leakage currents considerably. The ex-

tent to which device parameters are altered for a given radiation dose can dependto a large

degree on device construction and initial electrical characteristics.

Consider first the bulk damageaspect. Since neutrons can cause similar bulk damageas

energetic electrons and protons, and since most of the available bulk damagedata on tran-

sistors is for neutrons, the aboveenvironment was converted to equivalent fast neutron doses.

The amount of gain degradationa device will experience for a given radiation dose depends

uponthe basic material (silicon or germanium}, its initial gain value, andthe width of its
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base region (the alpha cut-off frequency can be used as a measure of base width). Figure 12-7

shows the gain degradation as a function of fast neutron dose of silicon and germanium devices

with initial gain values of 50 for several values of alpha cut-off frequency. Figure 12-8

shows the gain degradation of a 50-kilocycle alpha cut-off frequency germanium device as a

function of fast neutron dose for several initial gain values.

Considering a minimum shielding thickness of 1.0 grams per square centimeter (_ 0.4 cm of

aluminum) the equivalent neutron dose for a one-year period, as given in Table 12-2, would

be 6xl010/cm 2, 1.2xl012/cm 2 and 9xl010/cm2 for altitudes of 325, 1000 and 200 by 25,000

nautical miles, respectively. As can be seen from Figure 12-7, these doses are not serious

for high frequency signal devices (alpha cut-off frequency greater than 50 megacycles). How-

ever, they can very drastically effect high gain, low frequency power devices as depicted in

Figure 12-8. On the other hand, these doses would have little effect on diodes. It is interest-

ing to note that this bulk damage is primarily due to the proton environment and therefore

is not influenced by the large uncertainties associated with the electron environment.

The surface effects, on the other hand, could be a very serious problem. So far as is known,

this effect, for gas-filled mesa and planar devices, is essentially dependent on the total

accumulated ionization dose absorbed in the gas. The effect is apparently strongly dependent

on surface contamination, thickness of the passivation layer and other process variables;

resulting in a very random behavior. A surface effects experiment was recently conducted

by General Electric on some 100 planar passivated high frequency signal devices. In this

experiment the collector-base junctions were reverse biased with 10 volts continually through-

out the experiment. The ionizing radiation source was Cobalt-60 gamma rays. The average

gain degradation at a dose of 105 Rads (air) was 40 percent (that is, the devices retained

60 percent of their initial value). The spread in the gain degradation of the individual devices

was from 10 to 90 percent. Similarly at a dose of 107 Rads (air) the ayerage gain degradation

was 66 percent and the spread ranging from 30 to 95 percent. The variation in collector-base

leakage currents was even more variable ranging from no change to 6 orders-of-magnitude

change at 107 Rads (air).
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The gain degradationappears to be a fairly strong function of device operating point. The

abovedegradation valueswere for collector currents between0.1 and 1.0 milliamps. For

collector currents between5 and 10milliamps the degradationwas a factor of 1.5 to 2.0

less than those above.

Considering the ionization dose estimates given in Table 12-2, it would appear that the

surface effects problem could be serious, particularly for the 1000-nautical mile orbit.

However, as can be seen from Table 12-2, the ionization dose is primarily due to the elec-

tron environment, therefore a good comparative analysis at various altitudes requires a

better estimate of the electron decay than that contained above. This is particularly im-

portant for the 325-nautical mile and 200 by 25,000-nautical mile orbits. For example,

the electron intensity at 325 nautical miles is probably quite reduced, even now, from that

shown in Table 12-2. It would be even more so in the 1967 to 1969 time period.

In the extreme case, if one considers the ionization due to the protons alone, the one year

doses, for 1.0 gms/cm 2 shielding, range from 103 Rads (air) to 3x104 Rads (air} for the

various orbits. From surface effects experiments on planar devices performed to date, it

appears that somewhere between 103 and 105 Rads is the onset of severe gain degradation

in many silicon devices, although this dose range has not been explored in detail. There-

fore, surface effects still could be a significant problem just considering the protons alone.

This is particularly so at the higher altitudes.

To assess the surface effects in circuits requires detailed knowledge of the circuit, such as

gain margin, transistor operating points, junction biases, etc. Such an evaluation is beyond

the scope of this study; however, the possible solutions to any surface effects problems

appear to be quite limited at the present time. First, surface effects are more severe in

high-usage signal devices that operate in low power consumption circuitry. This means that

shielding is impractical since large volumes would have to be shielded and from the dose

estimates given above, shield thicknesses in excess of 4.0 grams per square centimeter

would constitute an extremely large weight penalty. On the other hand, worst case circuit

design alone would not be feasible due to the great variability seen in the radiation response
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of present state-of-the-art parts. About the only approach available appears to be a com-

bination of worst case circuit design and a parts radiation screening technique that would

select only those parts that would not degrade past the margin to which the circuits are

designed. Such a program for digital circuitry is currently in progress at the General

Electric Missile and Space Division.

On the other hand, shielding of bulk damage effects in power electronics appears to be quite

feasible. Surface effects will probably not be a significant problem since these devices

operate at high currents. They also are low-usage parts so that shielding of individual

transistors would be feasible. Power-weight trade-offs, could be performed to determine

the optimum shield thicknesses. The type of shielding to be used; for instance, aluminum

versus lead or iridium, for minimum weight would depend upon the volume to be shielded

and its geometric shape. For example, to shield an individual transistor, it is better to

use a high density material, such as iridium, rather than a low density material such as

aluminum. Both the weight and the volume of the shield material would be less for the high

density material for the same amount of radiation shielding. As the shielded volume in-

creases in size, however, the minimum weight shield shifts to the lower density materials.

12.2.3 EFFECTS ON SOLAR CELLS

The effects of the environment given above on N/P silicon solar cells for a one year time

period is shown in Figures 12-9, 12-10 and 12-11 for altitudes of 325, 1000, and 200 by

25,000 nautical miles, respectively, as a function of cover glass thickness. In the figures,

Voc, denotes the cell open-circuit voltage, Isc , is the cell short-circuit current, and Pmax'

is the cell maximum power point. These curves were derived using a computer program

that calculates the energy spectrum of the incident radiation as it passes through the various

shield thicknesses and then integrates this residual spectrum over the electron and proton

and I The output is the fraction of original V and Idamage functions for the cell Voc sc o oc sc

remaining after the specified flight time. The two outputs are then multiplied together to

give the fraction of the maximum power that remains.
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Two sets of curves are plotted in each figure. One represents the effect of the combined

environment of protons and electrons as they were in January 1963, that is no electron de-

cay has been assumed since January 1963 (worst case). The other set of curves is for pro-

tons alone; assuming all the electrons have decayed. As can be seen from the figures, the

difference between these two assumptions is not very great, a variation up to five percent

on maximum power for the two altitudes considered. It is not unreasonable to assume that

for the 1967 to 1969 time period, the effects for the 325 and 200 by 25,000 nautical mile orbits

will be due essentially to protons only. For the elliptical orbit, the damage is due almost

entirely to the solar flare protons.

For the 1000-nautical mile orbit, it would appear more realistic at this time to include the

full effects of the electrons as shown in Figure 12-10 since the electrons at this altitude

are known to be decaying very slowly.
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12.2.4 SUMMARY

In summary, it appears that the degradation of solar cells for the 325 and 200 by 25,000-

nautical mile orbits will not be severe, approximately 15 percent after a year. The degra-

dation estimate for the elliptical orbit is almost entirely due to solar flare activity. The

present estimate is based on data gathered during the last maximum of the solar cycle; how

closely this activity will be repeated during the next solar cycle maximum is not known.

Bulk damage to transistors does not appear to be a severe problem, although low frequency

power devices may be somewhat effected for the 1000-nautical mile orbit case.

Radiation induced surface effects on transistors and diodes, on the other hand, may impose

a severe degradation problem. This is particularly so for the 1000-nautical mile orbit.

Since this effect is primarily due to total ionization, rather than atomic displacements as is

the case with bulk damage, the overall magnitude of the problem is controlled by the trapped

electron environment. Since most of these electrons are believed to be the result of the

nuclear test, Starfish, and are known to be decaying, it is difficult to say what this environ-

ment will be in the 1967 to 1969 time period. Therefore, a large uncertainty remains as to

the magnitude of any radiation induced surface effects in transistors for the orbits of interest.

In formulating the power subsystem design, the radiation degradation effects on solar cells

will be considered. The degradation versus shield thickness plots given in Figures 12-9,

12-10 and 12-11 will be used to select the cover glass thickness and size the solar array

for the three vehicle designs. Design solutions to the bulk damage and surface effects prob-

lems require detailed circuit design so they are beyond the scope of this study. However,

these are very important areas which should receive further study when a preliminary de-

sign of the spacecraft is undertaken.

12.3 SOLAR CELL PERFORMANCE

The solar cell performance assumed for this study is based on the results of experimental

measurements made by the General Electric Spacecraft Department on a group of six
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RCA N/P solar cells. N/P solar cells were selected rather than P/N cells because of

their superior radiation resistance (N/P solar cells are 10 to 20 times more radiation

resistant than P/N cells}. The cells were two by two centimeters in size with a silicon

base resistivity of one ohm-centimeter, they were highly polished and had alloyed grids.

The cells were mounted on pallets with a silicone rubber, in which thermocouples were

buried. The pallets were hard-mounted to a temperature-controlled copper heat sink in

a small vacuum chamber with a fused silica window. Short-circuit current was determined

at various temperatures using a carbon-arc solar simulator. The voltage-current curves

were then obtained using a color-temperature controlled tungsten source, using each solar

cell as its own illumination transfer standard at each temperature. The resulting V-I curves

for one of the cells is shown in Figure 12-12.

The data from these measurements was reduced and is shown in Figures 12-13 and 12-14.

Figure 12-13 shows the average efficiency at each temperature and the average slope assumed.

The slope results in a relative temperature-efficiency coefficient of -0. 0026/°F, referred

to 85°F. For this study, this relation was adjusted upwards to correspond to an efficiency

of 11 percent at 85°F. An equation may be written for the relative temperature dependence

of efficiency from this data:

_TT = 2.417 - 0.0026 T T =°R

12.4 SOLAR CELL FILTER CHARACTERISTICS

Interference filters are used to optimize the output of solar cells. The selection of a filter

and the resulting characteristics of the filter are considered here.

12.4.1 SOLAR CELL FILTER OPTIMIZATION

Optimization of the solar cell filter is based on considerations for maximum power output

of the solar cells as a function of the width of the filter bandpass. The optimum bandpass

is primarily influenced by the special response and temperature dependence of the solar cell.
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Since the filter is an interference type, its transmission characteristic is also a function of

the incidence angle of the incoming light. Sincethe solar panels are sun oriented the array

is essentially perpendicular to the solar vector at all times and the incidence angle effects
do not influence the selection of the filter.

In selecting the optimum filter, both blue-red andblue filters were considered. The defini-

tions of these filters are based on the wavelengthat the 50 percent transmission points:

kl is the short wavelength cut-on for both the blue and the blue-red filter

k2 is the cut-off wavelength for the blue-red filter

k3 is the long wavelength at which the blue-red filter again transmits.

Typical spectral transmittance of these filters is shownin Figure 12-15. The solar cell

spectral response for which the filter was optimized is shownin Figure 12-16.

Z

(D

I

_D

Z

100

8O

6O

4O

2O

0

0.2

_BLUE FILTEr

t%

/ 1I

, /
0.6 0.8 1.0 1.2 1.4 1.6

WAVELENGTH--MICRONS

dV
--BLUE-RED FILTER

1.8 2.0 2.2 2.4

Figure 12-15. Spectral Transmittance of Filters

12-25



l

Z
©

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

/

/
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

WAVELENGTH - MICRONS

Figure 12-16. Spectral Response of N/P Silicon Solar Cell

12-26



Varying the bandpass characteristics of a solar cell filter affects the efficiency of the cell

through two mechanisms. Broadening the bandpass increases the actinic transmission (the

transmission of light to which the cell responds), directly affecting the cell efficiency. It

also increases the amount of energy the cell absorbs and raises its temperature, thus in-

directly decreasing the efficiency. The optimum filter occurs at the point where the two

effects are equal for a given change in bandpass and the efficiency is maximized.

The filter optimization calculations proceed as follows. For each filter characteristic

chosen for study, the average solar absorptance is determined (Section 12.4.2). This

value is used to calculate the cell temperature, which in turn is used to calculate the cell

efficiency relative to 85°F by the use of the equation for temperature dependence of cell

efficiency as developed in Section 12.3.

The actinic transmittance, _D' was then determined for this filter by integrating the product

of the cell spectral response (Figure 12-16), the filter transmittance, and the solar spectrum.

The resultant solar cell efficiency is:

r} = r/S C _TD ??T

For this application, the bare cell efficiency, _7SC, will be 11 percent (see Section 12.5.1).

The results of the filter optimization are shown in Figure 12-17. The figure illustrates

cell efficiency at end of life as a function of the filter cut-on for both blue and blue-red

filters. For each )`1 for the blue-red filter there is an optimum )`2' as shown in Figure

12-18. The long wavelength cut-on )_3 is a function of )'2' and is shown in Figure 12-19.

As can be seen in Figure 12-17, the maximum efficiency occurs for a )`1 between 0.40 and

0.43 microns for both the blue and the blue-red filter. Also evident is the relative insen-

sitivity of cell efficiency to the cut-on wavelength in the region near the maximum efficiency

point. A change of 40 millimicrons in )` 1 produces a change in efficiency of only one percent.
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Selecting a filter with the cut-on toward the longer wavelengths offers certain advantages.

The panel operated at a lower temperature, thus reducing to some extent the thermal in-

teraction with the vehicle. Any shift of the filter to longer wavelengths by design reduces

the ultraviolet leakage of the filter and provides greater protection to the organic cover

glass bond.

Because of these considerations, a blue-red filter was selected with the cut-on wavelength

shifted to the longer wavelengths as much as possible without seriously compromising the

efficiency optimization. The resulting filter has the following characteristics:

kl = 0.43 Microns

k2 = 1.09 Microns

k3 = 1.43 Microns

_TD = 0.92

s ° = 0.625 (See discussion below).

The solar cell panel does not have zero thickness, and there is a temperature drop through

the panel. Approximately one half the heat is conducted through the panel to be radiated

from the back side. For a typical panel structure the temperature drop between the front

and back faces is 10°F. Thus the solar cells will operate approximately 5°F higher in

temperature than the average temperature of the solar array. To account for this increase

in temperature, in a convenient manner, the solar absorptance of the filter-cell composite

was increased by 0.025, which corresponds to a 5°F temperature increase in solar panel

temperature. The resulting filter-cell solar absorptance, _o' is then 0.65.

12.4.2 MEASUREMENT AND CALCULATION OF SOLAR ABSORPTANCE OF SOLAR

CELL FILTER

Solar cell-filter composites were prepared, using several different types of cells and blue-

red filters. The total spectral reflectance of these composites was measured in a spectro-
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photometer. The solar absorptance was calculated from the absorptance (1.0 - reflectance)

weighted with the solar spectrum:

oHA dX

(_ -
O co

o(H dk

where: _ =
o

H

A

Solar Absorptance

Solar Spectrum

Spectral Absorptance of Filter-cell Composite.

The results of these calculations are shown as data points in Figure 12-20. Note that the

trend of absorptance versus filter cut-on wavelength for the measured points nearly parallels

the theoretical curves. The Texas Instrument's solar cell and RCA solar cell composites

have lower absorptance because the surfaces of those cell types are highly polished and

are more reflective. This higher reflectance is not immediately obvious on examining the

bare cell reflectance curves, which are shown in Figure 12-21, since the reflectance in

the spectral region of greater solar intensity (0.4 to 0.6 micron) is greater for the sand-

blasted cell than the polished cell. However, the filter also transmits in the infrared, and

in that region the increased reflectance of the polished cell has its effect.

The net result is that the reflectance of a solar array made of polished cells will be about

0.08 greater and the temperature will be about 18°F cooler than an array of sandblasted

cells. This corresponds to about five percent more power output, and since the initial

efficiencies available for the two cell types are about the same, this five percent gain is

free.

A comparison was made of the solar absorptance of the various filters and cells and a

compromise set of properties was selected for the study. These are marked "Estimated

for N/P cells" in Figure 12-20, and were used in the filter optimization procedure outlined

in Section 12.4.1.
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12.4.3 CALCULATION OF TRANSMITTANCE OF SOLAR CELL FILTER

Another parameter used in filter optimization is the transmittance of the solar cell filter

to light to which the solar cell responds (the actinic transmittance). This was calculated

for filters of various cut-on wavelengths by integrating the product of the solar spectrum,

the solar cell spectral response, and the spectral transmittance of the solar cell:

HTRdX

_TD =

fo _ Hdk

where r/D = Actinic transmittance

H = Solar spectrum

T = Spectral transmittance

R = Solar cell spectral response.

The results of these calculations are shown in Figure 12-22 as a function of the filter cut-

on wavelength.

0o 95

0o 94
(9
Z
< 0.93

N Oo92

Z
< 0.91

Oo9o
Z

Oo 89

Oo 88

POINT

\
0.35 0.40 0o 45

CUT-ON WAVELENGTH, k 1 - MICRONS

Figure 12-22. Calculated Transmittance of Blue-Red Filter

0.49

12-32



12.5 SOLAR ARRAY PERFORMANCE

Using the performance parameters established in Sections 12.2, 12.3, and 12.4, the solar

array performance is calculated in this section.

12.5.1 GOVERNING EQUATION

The power output per square foot of sun oriented solar array is given by:

where

P = SZ _SC _TT _D _?U ??M _ME _S _TRD cos

P = Power output, watts/ft 2

S = Solar intensity, watts/ft 2

Z =

_7SC =

r}T =

_?ME =

77S =

Solar cell packing factor

Efficiency of bare cell (free space +85°F)

Temperature-efficiency dependence of solar cell

_D -- Actinic Transmittance of filter

_U = Ultraviolet degradation factor

Manufacturing loss factor

Micrometeorite loss factor

Solar constant variation factor

_?RD = Radiation degradation factor

£ = Array tilt angle (measured from perpendicular to sun's rays).
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Eachof these factors is discussedbelow:

a. Solar Constant (S)

The solar intensity at 1 AU is assumed to be 130 watts per square foot. The

solar intensity changes slightly throughout the year as a result of the variation of

the earth's distance from the sun. This variation is accounted for by the solar con-

stant variation factor, _7S, discussed below.

b. Packing Factor (Z)

A ratio of active cell area (1.9 square centimeters for a one by two centimeter cell)

to panel area of 0.90 was assumed. This has been found to be reasonable based

on past experience with manufacturing solar arrays of the type required for this

application.

Co Solar Cell Efficiency (rTSC)

An air mass zero efficiency of 11 percent is assumed for a bare cell at 85°F. The

Spacecraft Department has measured the efficiency of several N/P cells from one

vendor at 10.5 percent and these cells were mechanical rejects with no particular

attention paid to trying to select high efficiency. The same vendor has submitted

price and delivery estimates to MSD within the past few months covering a range of

air mass zero efficiencies from 9 to 11 percent in quantities up to several hundred

thousand. They indicate deliveries in the tens of thousands per month are obtain-

able for the 11 percent cells beginning about six months after receipt of an order.

Therefore, for the relatively low power level involved in this application, no dif-

ficulties are anticipated in obtaining the required number of 11 percent cells.
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d. Temperature Efficiency Dependence 0?T)

e.

A degradation factor of -0.26 percent per degree temperature rise above 85°F is

assumed. This is based on measured data on 10.5 percent efficient N/P solar

cells (see Section 12.3). Therefore, _TT = 2.417 - 0. 0026T, where T is in OR.

Actinic Transmittance of Filter 0?D )

A value of 0.92 was used for the actinic transmittance of the filter. This value

was derived in Section 12.4.1.

f. Ultraviolet Degradation Factor 0?U)

An ultraviolet degradation factor of 0.95 is assumed. This is based on the General

Electric Spacecraft Department's experience with the development and testing of

solar arrays. This factor covers an observed decrease in output shortly after

exposing the cell cover-glass combination to sunlight. This has been attributed

to a decrease in the transmission properties of the filter due to exposure to ultra-

violet radiation. It has been found that the bulk of this effect occurs during the first

20 hours in sunlight, either in vacuum or in the atmosphere. No significant further

deterioration is experienced after this period. Testing has confirmed this con-

clusion for periods up to a simulated 4.3 years of sunlight exposure. Investigation

into the detailed mechanism of this effect indicates there is a possibility of eliminat-

ing it by proper treatment of the filter. If this proves to be the case, this loss

factor can be eliminated.

go Manufacturing Loss Factor 0?M)

A manufacturing loss factor of 0.97 percent is assumed. This factor covers

losses incurred in soldering, etc., during manufacturing and the value assumed

is based on the Spacecraft Department's experience in the manufacture of solar

arrays.
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h. Micrometeorite Loss Factor (_ME)

Measurements made by the Spacecraft Department indicate the maximum degradation

from micrometeorites to be five percent. Solar cell filter composites were pre-

pared, their output measured, and then they were thoroughly sandblasted using a

fine abrasive. Measured output after sandblasting showed a 4.5 percent reduction

in short circuit current and a five percent reduction in current at the maximum power

voltage.

i. Solar Constant Variation Factor (_?S)

The orbit of the earth about the sun is elliptical, and the varying earth-sun distance

causes a maximum variation in the solar constant of • 3.4 percent about the mean

value of 130 watts per square foot. Therefore, a solar intensity variation of 0.966

was used in sizing the solar array.

j. Radiation Degradation Factor (_RD)

This factor accounts for the degradation in solar array output resulting from radia-

tion damage. The radiation degradation factor is defined as the percent of the original

power output available at the end of one year. This subject was covered in Section

12.2 and the results are summarized in Table 12-3.

Table 12-3. Radiation Degradation Factors

Orbit Altitude

(Nautical Miles)

1000

200 by 25,000

325

Radiation Degradation Factor, _RD

6 Mils

0.59

0.84

0.86

15 Mils

0.71

0.90

0.91

30 Mils

0.76

0.93

0.95
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k. Array Tilt Angle (0)

For this application the entire spacecraft will be sun pointing and since the solar

thermionic system requires an orientation accuracy of approximately 0.1 degree,

there should be no difficulty in mounting the solar panels such that they are oriented

to the sun within + 2 degrees. The cosine of two degrees is 0. 99939 so the cosine

of @term in the solar array power output equation is essentially one.

Summarizing the factors to be used yields:

S = 130 watts/ft 2

Z = 0.9

77SC= 0.11

r/T = 2.417-0.0026T

_TD = 0.92

flU = 0.95

_M = 0.97

_ME = 0.95

t/S = 0. 966

17RD = See Table 12-3

eos_ = i

With the exception of temperature, all of the factors are known and the basic equation re-

duces to

P = i0.0 _T_RD.

The radiation degradation factor, _TRD, still appears because the solar cell cover glass

thickness has not been selected. This thickness will be determined in a subsequent section

and then rtR D will be known.

To compute 77T the solar cell operating temperature must be estimated. This is done in

Section 12.5.2.
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12.5.2 SOLARARRAY OPERATINGTEMPERATURE

The steady-state thermal balance equation for a solar array panel operating in spaceis

given by

S [Z(Xo+(l-Z)_F]COS%

SOLAR RADIATION INPUT

+
A _B

EARTH ALBEDOINPUT

+ EB (B + EF Z ¢C + EF (l-Z) _F

EARTH RADIATION INPUT

[ IT4=v Z EC+ (l-Z) EF + (B

ENERGY RADIATED FROM

CELLS, UNCOVERED FRONT

AREAS, AND BACK OF

PANEL

+ P

ELECTRICAL POWER

OUTPUT OF ARRAY

Where the terms which have not been previously introduced are defined below:

= Average absorptance of solar cells
o

a F = Absorptance of area between solar cells

a B = Absorptance of back surface of solar panel

= Stefan-Boltzman constant, watts/ft2-°R 4

¢C = Emittance of solar cells

E = Emittance of area between solar cells
F

EB = Emittance of back surface of solar panel

A = Earth albedo flux, watt/ft 2

E B = Earth thermal radiative flux received by the back portion of the solar panel,
watts/ft 2
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EF = Earth thermal radiative flux received by the front portion of the solar panel,
watts/ft 2

T = Average solar panel temperature, OR.

The following values of absorptivity and emissivity will be used in this analysis:

0_ = 0.65 (See Section 12.4.1}
o

_F = 0.2 The area between the cells consists of aluminum substrate and solder

connections. It was assumed that some of this area would be coated

with a high reflectance coating to reduce the solar intake on the panel.

(_B = 0.2 Several high-emittance coatings have been developed which have measured
absorptivity values in this range.

EC

6
F

_B

= 0.83 This is the measured emittance of fused silica.

= 0.49 As above, some of this area would be covered with a high reflectance-

high emittance coating, increasing the emittance over that of bare
solder or aluminum.

= 0.90 Several high-emittance coatings have been measured in the past, and

the results are in this vicinity.

The earth albedo and radiative flux values can be computed using the following expressions:

A = aFBS

EB = _ FB T4e

E F = a F F T4e

where a = The earth albedo factor which varies with position and season from 0.20

to 0.54. An average value of 0.36 was used in these calculations.

T = The effective temperature of the earth for space radiation. This value wase
taken as 450°R
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F B = View factor between the back face of the solar panel and the earth

F F = View factor between the front face of the solar panel and the earth.

Obviously the view factors between the solar panel surfaces and the earth vary throughout

the orbit. In this analysis the calculations are based on the "worst case" combination of

view factors. As a result, the power output values calculated will represent the minimum

solar array output and significantly larger power outputs will be generated at other points

in the orbit. The worst case view factors for the three orbits of interest were obtained

from Reference 12-1 and are presented in Table 12-4 below. These values coupled with the

equations presented above were used to calculate the earth albedo and radiative flux values also

given in Table 12-4.

Table 12-4. Earth Albedo and Radiative Flux Inputs

ORBIT

ALTITUDE

(Nautical Miles)

1000

(101. 840) *

200 x 25,000

(45°)

325

(30°)

FB

0.04

0.52

0.75

FF

0.04

A

WATTS/FT 2

1.87

24.4

35.1

E B
WATTS/FT 2

0.82

10.65

15.4

EF 2
WATTS/FT

1.87

0

0

Using the expression developed for the electrical power output, P, in Section 12.5.1 and

substituting the known values into the thermal balance equation yields:

8.5x10-10T 4 + V/RD (24.17 - 0.026T) = 79.16 (i000 nm)

8"5x10-10T4 + _?RD (24.17 - 0.026T) = 91.87 (200 x 25,000 nm)

8.5x10-10T4 + _RD (24.17 - 0.026T) = 98.32 (325 nm)

*Numbers in parentheses indicate orbit inclinations.
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Substituting the radiation degradation factors given in Table 12-3 and solving for the solar

array temperature, T, yields the results presented in Table 12-5.

Table 12-5. Solar Panel Temperature

ORBIT

ALTITUDE

(Nautical Miles)

i000

(i01.84 °)

200 x 25,000

(45°)

325

(30 ° )

SOLAR PANEL TEMPERATURE - OR

6 MILS

542

56O

572

15 MILS

538

559

570

30 MILS

537

558

569

Several important points should be emphasized regarding the temperatures presented in

Table 12-5. First these temperature estimates represent the maximum value the solar

panels will reach during the mission life. As indicated previously, they were calculated for

the worst case thermal position in the orbit. Therefore, at other points in the daylight

segment of the orbit the solar panels will operate at lower temperatures and thus produce

more power. These temperatures were also calculated for conditions at the end of one year

in orbit. Temperatures are maximum at the end of the mission life because the electrical

power produced by the solar cells is reduced due to radiation damage. The small decrease

in temperature with increasing cover glass thickness results because the increase in shield-

ing thickness protects the solar cells to a greater extent and the power output is therefore

degraded less over the one year period. In the initial phase of the mission, before radiation

has affected the solar cell output, the solar panels would operate at the same temperature

regardless of cover glass thickness.

12.5.3 POWER OUTPUT PER SQUARE FOOT OF SOLAR ARRAY

Now that the solar array temperatures have been estimated, the power output per square

foot of solar array can be calculated using the following expression developed in Section 12.5.1:
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P = 10.0 nT,/RD watts/ft 2.

This equation was evaluatedfor the radiation degradation factors andtemperatures given

in Tables 12-3 and 12-5 respectively. The resulting power outputs are given in Table 12-6.

Table 12-6. Solar Array Minimum Power Outputs

ORBIT
ALTITUDE

(Nautical Miles)

1000
(i01.84 °)

2OOby 25,0OO
(45°)

325

(30 ° )

POWER OUTPUT - WATTS/FT 2

6 MILS

6.0

8.07

8.0

15 MILS

7.22

8.65

8.52

30 MILS

7.77

9.27

8.9

Since maximum temperature values were used, the power output per square foot of solar

array figures represent the minimum values corresponding to the worst thermal position

in the orbit and operation after one year in space.

For a given cover glass thickness the minimum power output figures are approximately the

same for the 325 and 200 by 25,000-nautical mile orbits. However, the power output of

the solar array in the 325-nautical mile orbit will not vary greatly from the minimum figures

given in the table, while in the 200 by 25,000-nautical mile case, the power output will be

substantially higher than the minimum figure throughout most of the orbit period. This

occurs in the latter case because the wide altitude extremes encountered in the elliptical

orbit result in large variations in the earth radiation and albedo inputs to the solar panels.

In spite of the lower array temperature, the minimum power output for the 1000-nautical

mile case is substantially lower (approximately 25 percent) than the array output in the other

two orbits. This is due to the higher radiation degradation associated with this orbit.
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Also, in the 1000-nautical mile orbit, because of the particular orbit inclination, the solar

panel view factor will not change appreciably with orbit position. Therefore, the power

output of the solar array will be essentially constant throughout the daylight segment of the

orbit.

In each of the three orbits, the power output will be appreciably higher in the initial phases

of the mission; this is because the radiation environment will not have degraded the solar

cell performance appreciably and the cell operating temperature will be lower.

12.5.4 SELECTION OF COVER GLASS THICKNESS

To this point, the solar array power output calculations have been made as a function of

cover glass thickness. The necessary information is now available to select the proper

cover glass thickness.

Figure 12-23 shows solar panel specific weight as a function of cover glass thickness. This

curve is based on the Spacecraft Department's past experience in the design and develop-

ment of solar panels of the type and size required for this application. A weight breakdown

of the components, excluding the panel structure, used to establish the results given in

Figure 12-23 is presented in Table 12-7.

Table 12-7. Solar Panel Weight Breakdown

WEIGHT
COMPONENT LB/FT2

Cover Glass (Fused Silica 30 Mils)

Glass-to-Cell Adhesive, Wire and Solder

Solar Cells
I

Cell-to-Substrate Adhesive (10 Mils)

Electrical Insulation Coating on

Substrate (2-Mfl)

Diodes

Terminals

TOTAL WEIGHT EXCLUDING STRUCTURE

0. 344

0.05

0.28

0. 075

0.015

0. 003

0.02

0. 777 :Pounds/Square Foot
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These figures include a cover glass thickness of 30 mils. The unit area weight of other

cover glass thicknesses can be found by multiplying the thickness by 0.01145 lb/ft2/mil.

The difference between the weight figures presented in Table 12-7 and those given in

Figure 12-23 represents the panel structure weight.

Coupling the results given in Table 12-6 and those presented in Figure 12-23, the specific

power (watts per pound) of the solar array can be computed as a function of cover glass

thickness. This was done and the results are presented in Table 12-8. The unsupported

solar panel area was assumed to be six square feet.

Table 12-8. Solar Panel Scientific Power

ORBIT SOLAR PANEL
ALTITUDE - POWER OUTPUT - WATTS/FT2 SPECIFIC WEIGHT - LB/FT 2 SPECIFIC POWER - WATTS/LB

(Nautical Miles) 6 Mils 15 Mils 30 Mils 6 Mils 15 Mils 30 Mils 6 Mils 15 Mils 30 Mils

1000

200 by 25,000

325

6.0

8.07

8.0

7,22

8.65

8.52

7.77

9.27

8.9

i. O0

1.00

1.00

I. I0

i.I0

1.10

1.26

1.26

1.26

6.00

8.07

8.00

6.65

7.86

7.74

6.18

7.35

7.07

These results are plotted in Figure 12-24. It is apparent that the cover glass thickness

should be kept as small as possible for the 200 by 25,000 and 325-nautical mile orbits.

Experience indicates that the minimum useable glass thickness is six mils. Handling

smaller thicknesses is difficult and results in a high percentage of breakage. Although for

these two orbits it might result in higher specific powers, the cover glass cannot be com-

pletely eliminated because the filter is deposited on the under side of the glass. For the

1000-nautical mile orbit, the optimum filter thickness is approximately 15 mils.

The power output figures on which the solar array sizing will be based are summarized

in Table 12-9.
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Table 12-9. Solar Array Power Output at Optimum Cover Glass Thickness

ORBIT

ALTITUDE

(Nautical Miles)

COVER GLASS

THICKNESS

MILS

200 by 25,000

SOLAR ARRAY

POWER OUTPUT

WATTS/FT 2

1000 15 7.22

6 8.07

325 8.0

12.6 POWER REQUIREMENTS

The power requirements can be considered in two parts: (1) that required during initial

stabilization before the spacecraft is capable of generating power, and (2) that needed during

normal orbital operation. The expected power requirements for these two conditions are

outlined in the following two sections.

12.6.1 POWER REQUIREMENTS DURING INITIAL STABILIZATION

While the spacecraft is on the launch pad the power requirements would be supplied by a ground

power supply external to the launch vehicle. At launch this source of power would be dis-

connected. In the ensuing period from launch until the vehicle is stabilized and the solar

panels oriented to the sun, the spacecraft will have no power generating capability and

the power requirements will be supplied by batteries located onboard the launch vehicle or

within the spacecraft. Of prime interest here is the power needed from the time the space-

craft is separated from the launch vehicle until the solar panels are deployed and oriented

to the sun; since these requirements must be supplied by batteries located on the spacecraft.

After the spacecraft separates from the launch vehicle it will take approximately ten minutes

(see Section 11) to stabilize, deploy the solar panels, and orient the vehicle to the sun.

During this period the spacecraft power requirements will be confined primarily to the

attitude control and TT&C subsystems. The attitude control subsystem will be engaged in
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stabilizing and sun orienting the spacecraft while the TT&C subsystem is needed to track

and command the vehicle, and to handle diagnostic instrumentation.

Table 12-10 outlines the estimated power requirements during the ten-minute stabilization

period.

Table 12-10. Power Requirements During Initial Stabilization

COMPONENTS

Gyros (3)
©

N Flywheels (2)
m_ Control Electronics

_ Logic Devices

m_ Pneumatic Solenoids

<

>_

L)

POWER

WATTS

DURATION

MINUTES

35 10

4 10

9 10

3 10

80 1

ENERGY REQUIREMENTS

WATT-MINUTES

350

40

90

30

80

A-C and D-C Power Conditioning

(75% Efficiency)

Command Receiver (2)

Command Decoder (2)

Programmer

PCM Encoder

Signal Conditioner

Diagnostic Instrumentation

Tracking Beacon a

Core Storage b

TOTAL

0.4

7
!

1

2

1

1

2

0.2

10

10

5

10

10

10

10

10

10

7O

'4
I

35

10

2O

10

10

2O

2

771 Watt-

Minute s

NOTES:

a. The tracking beacon is replaced by a transponder in the highly elliptical orbit

case. The transponder requires 12 watts continuously for the ten-minute

period.

Do The core storage is replaced by a tape recorder in the highly elliptical orbit

case. The tape recorder requires 10 watts continuously for the ten-minute

period.
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To allow for contingencies the total energy requirements presented in Table 12-10 are in-

creased (approximately 10 percent) to 850 watt-minutes or 14.2 watt-hours. This figure

will be used for the 1000 and 325-nautical mile orbits. The 200 by 25,000-nautical mile

orbit requires 969 watt-minutes which increased approximately 10 percent becomes 1065

watt-minutes or 17.8 watt-hours. These requirements will be supplied by primary silver

oxide-zinc batteries which are sized in Section 12.7.3.

12.6.2 POWER REQUIREMENTS DURING NORMAL ORBITAL OPERATION

By combining the power requirements for the primary and secondary experiments and the

various spacecraft subsystems, power profiles can be developed for each of the three mis-

sions. This was done using the power requirements given in Sections 5.4,* 8.6, 10.11 and

11.5 , and the results are presented in Table 12-11. These power requirements are

arranged to represent the "worst case" condition that could be encountered. All of these

requirements will not occur every orbit and will not always occur in the particular se-

quence assumed, however, they could occur in the form assumed and if they did they would

represent the most severe demand on the power subsystem. The power requirement sum-

marized in Table 12-11 are presented graphically in Figures 12-25, 12-26 and 12-27. These

requirements will be supplied by a combination solar cell-nickel cadmium battery power

supply which is sized in Section 12.7.3.

12.7 POWER SUBSYSTEM DESIGN

12.7.1 DESCRIPTION OF SUBSYSTEM

A schematic of the power subsystem is presented in Figure 12-28.

The solar array, using N/P silicon solar cells, supplies power to the load and charging

power to the batteries when the vehicle is in the daylight portion of the orbit. Rechargeable

nickel-cadmium batteries supply the power requirements when the vehicle is in the earth's

shadow and short term peaks during the daylight portion of the orbit. The power requirements

*Located in Volume II
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Table 12-11. Spacecraft Power Requirements a

C-

<

g

m
=

Experiment or Subsystem

A- Thermiordc Experiment

B- Secondary Experiments

T r& C Subs) stem

Attitude Control Subsystem

E- Critical Spacecraft

Component Instrumentation

A- Therminnic Experiment

B- Secondar_ E×q)erimente

3- TT&C Subsystem

D- Attitude Control Subsystem

Power Requirements Comments

4.4 watts continuously during the daylight 1.4 watts continuously for instru-

portion of the orbit, t. 4 watts continuously mentation, 0.4 watts during day-

during the dark segment of the orbit, light for cesium reservoir heaters,

2,6 wars durlng daylight for

reflectometer.

I8.1 watts continuously during the daylight This includes all of the priority

portion of the orbit. 7 watts continuously A and B experiments listed in

during the dark segment of the orbit. A Table 5-5 (Volume If) except the

22.3 war spike of 15 minutes duration earth albedo exporiment.

during the daylight portion of the orbit.

6 watts continuously throughout the orbit. The 6 watts are tot data cnllecting

An 18 _aR peak of 12 minutes durattun and 1_ watts are required during

occur thg during the dark segment of the data transmission.

orbit.

36 watts eontinuousl) throughout the orbit.

A 81 watt peak of 3 minutes duration during

the dark portion of the or(hi. Also a 4O

watt peak of 10 minutes duration during the

light portion of the orbit.

4.4 watts contthuousl) during the daylight

portion of the orbit. 1.4 wars continuous1)

during the dark segment of the orbit.

14, I watts continuousl) during the daylight

portion of the orbit. 6,3 watts contthuousl3

during the dark segment of the orbit. A

2O. 2 watt spike of ]5 minutes duration

during the daylight portion of the orbit,

20 watts continuously throughout the orbit.

A 40 war peak of 5 minutes duration and a

34 watt peak of 5 minutes duration both

occuring during the dark segment of the

orbit. These peaks do not coincide.

36 watts continuously throughout the orbit.

A 81 watt peak of 3 minutes duratmn during

the dark portion of the orbit. Also a 40

watt peak of I0 minutes duration during the

light portion of the orbit.

The 81 war [Yak is associated with

unloading the fl)_'hecls and re-

orienting the spacecraft when it

emerges from the earth's shadow.

Both of these functions requLre

firing pneumatic solenoids. The

4O watt peak is ass_iaWd _ith the

fly.wheels demand for more power

during the reorientation phase

after each shado_ period.

Primarily for temperature measure-

ments using thermistors.

1.4 watts contthuously for instru-

mentatmn. 0.4 _atts during day-

light for cesium reservoir heaters,

2.6 watts during da)light for

refiectomeber.

This includes all of the priority A

and B experiments listed in Table

5-5 (Volume II) except the Radiation

Effects on Solar (:ells and the

Earin Albedo Experln:ents. The earth

sensor portion of the ultraviolet

experiment is alsu eliminated.

The 20 watts are for data collectthn

and 40 wars are required during

data transmission. The 34 watt

peak is associated with the R&RR

tracking phase.

The 81 watt peak is ass_iat_,d with

unloading the fly_heels and re-

orienting the spacecraft when it

emerges from the earth's shadow.

Both of these functions require

firing pncumatic solenoids, The

4O _att peak is associated with the

fl)_heels demand for more power

during the reorientatton phase

after each shado_ period.

E- Critical Spacecratt One war continuous. Prm_ardy for temperature measure-

Component Inst_mentation ments using thermistors.

A- Thermionic Experiment 4.4 wars contthuously (luring the daylight 1.4 watts continuous b for thstru-

portion of the orbit. 14 watts contthously mentatthn. 0.4 watts during da)-

during the dark segment of the orbit, light for cesium rt, sel'_oir heaters.

2.(i watts during dax hghi for

reflcctometer.

B- S(.condarv Experiment 23. t watts contthuously during the daylight This includes all of the priorit_

portion of the orhit. 7 _atts conttnuousl 5 A and B ex|_:riments lislA'd in

during the dark segment ol the t_rbit. A Tablt' 5-5 (Volnme II) except

27.2 watt spike _[ 15 mina,s duratlou the [tadlatbm I ifet ts on Solal

during the da) light portion of the orbit. Cell ex_wriment.

7 watts eontinuousl 3 throughout the orbit.

An I_ _ati p(,ak of 4 minutes duration

oeeurthg during the dark segment of the

orbit.

i C- TT&C Subs3stem

Attitude Control Subs} stem

L'r all( :d Sp:. ,,( 1;dr

t'oml,o., nl I._tlum,',hnn,.

N,)U's

36 watts contlnuoush throughout the orbit.

A _1 watt peak oi :1 n,inute_ duration during

the dark portl,)n (>f thc ,,,hit. Als,, :_ ,I0

waR peak of i0 nlinl_tt,_ ,ll_l_ltl,),_ tll_l i,_

the light portb)n ,,f tht, _,t h,t.

(m,, ,,:_tt c,,,,I.,u,)u_.

The 7 _aRs are for data coll(K'tton

and the Is _atts art, rcquwed during

data transmission.

The _i ,_att peak is ass_iala.d _ith

unloadirtg the flxwheels and roorh,ntinK

the sl)ac('cr;_ft _ht'II It em('rgcs It "ore

tilt' t,:_rth's _halh,_. ]h)th *)[ thl,st_

functio.s rt.tttdl',' lit ill*. [m('un_t_tlC

solt,llnlds, rib, -tn _, art p,'ak is

ass(x'iatt'd _ ith thl' Ii_ _ h_,l_ ,h._mmd

b,r nlOl,' Pt'x't'l tlutln): Ih_ l('(_ll_t,t:H_,'lt

ph;l_l. :l fieF t:leh shadt,_, i_t n.l.

Prlnlarth t(,r b'mpcr;_iulv m_'as_ll'_'tnt'nts

using thl.l'mlstt_r s,

;t - I'ht,_( I,O,,t'/ l(,qull* ml,nt_ rel,lt _vnt tlu, _()l'st e:lse ' eorldlitons the p(n_el subs%stem _ould st, t, during tiw mission.
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Figure 12-28. Power Supply Schematic

during initial stabilization, before the solar panels are sun oriented, would be supplied

by a non-rechargeable (primary) silver oxide-zinc battery.

The battery charge regulator controls the rate at which the battery is charged. It is a

switching type unit which maintains the required average battery charging current and

operates at a very high efficiency. With this arrangement, the battery also provides coarse

voltage regulation on the main bus (the bus voltage varying between battery charge and dis-

charge values) with an expected variation of approximately ± 15 percent. Each load would

provide its own voltage level and regulation.

The power control unit provides for switching of various components according to command

and/or programmed inputs, contains input connections from ground power, and may also

provide some circuit protection.

12-54



12.7.2 DESCRIPTION OF COMPONENTS

Since detailed component designs are beyond the scope of this study the exact techniques

employed in the component designs are unknown. However, the component descriptions

given here assume approaches presently used in the design of similar components.

12.7.2.1 Solar Array

The solar array would consist of one by two-centimeter silicon N/P solar cells of 11 per-

cent efficiency in air mass zero illumination at 85°F. The cells would have grids of alloyed

construction; the front cell surface would be polished and would have an anti-reflection coat-

ing which is otpimized for 0.6 micron; the base resistivity would be one ohm-centimeter;

and the contact strip would be on the short end of the cell, resulting in an active area of

1.9 square centimeters per cell.

The solar cells would be connected in parallel in groups of ten to form submodules, which

would then be connected in groups of 36 (typical) to form modules. The cells will be bonded

flat to the substrate. Typical module construction is shown in Figure 12-29. The solar

array would provide 28 volts _=15 percent to the bus.

Fused silica cover glasses would be applied to the cells to serve as protection against the

ionizing radiation and micrometeorite damage. A separate cover glass would be applied

to each cell.

Multi-layer interference reflecting filters would be applied to the cover glass to reflect the

ultraviolet and infrared portions of the solar spectrum, to protect the cover glass bond from

darkening due to the ultraviolet radiation and to increase the efficiency of the solar cells by

lowering their operating temperature. The cut-off wavelengths of this filter would be 0.43

and 1.09 microns.
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Silver strips would be used to connect the solar cells in parallel, and short silver tabs to

connect the submodules in series. Thin silver sections of this nature provide high elec-

trical conductivity, are easy to solder, and are light in weight. The cover glass would be

bonded to the solar cells using an epoxy resin such as General Electric PD-454. The solar

cells would be bonded to the module substrate using a silicon rubber like General Electric

RTV-60.

In order to prevent short circuits between the solar cells and the metallic substrate, a thin

layer of insulation would be applied directly to the substrate before the cells were bonded.

An epoxy adhesive in sheet form such as Bloomingdale FM-1000, would be used for the

purpose.

To reduce the temperature drop through the module substrate structure, the substrate would

be made of sheet aluminum instead of the traditional aluminum honeycomb. By taking this

approach the front-to-back temperature drop is reduced from 30 ° to 10°F. The modules

would be attached to sheet metal supports which would serve as the major structural member.

Diodes would be used in series with each series string. The diodes protect against the

eventuality of shorting in the solar array by preventing other parts of the array from dis-

charging into the shorted section.

12.7.2.2 Battery

The battery would consist of sealed nickel-cadmium cells housed in a magnesium of alumi-

num container. Nickel-cadmium cells are recommended because they have demonstrated

long-life capabilities in space under cyclic operating conditions. Silver oxide-zinc cells

might also be used depending on developments in the near future. These cells are lighter

and smaller than nickel-cadmium cells but as yet have not demonstrated the life and relia-

bility characteristics of nickel-cadmium cells.

12-57



Charging of the battery canbe accomplishedby either the constant current or constant

potential methods. A constant-current charge wouldbe maintained at approximately 1.5

amperes andterminated whenthe battery reached the desired voltage level; the battery

would then be floated. A constantpotential charge could also be used, but the charge cur-

rent must be limited in caseswhere the battery hasbeen deeply discharged. The actual

charging scheme is often a combination of the two, with maximum current andvoltage limits

superimposed. Variable current limits would be used, controlled by the voltage on the

battery during charging. The high current rate being used whenthe battery voltage was

low. As the battery voltageincreased, the charge current would be reduced until the bat-

tery reached its fully chargedvoltage, by which time the charge would becomea constant

potential float. The maximum current charge rate limit is imposed to keep the current

below the point at which gassingoccurs.

The power requirements during initial stabilization of the spacecraft would be supplied by

a non-rechargeable silver oxide-zinc battery. This particular type of battery offers a high

watt-hours per pound ratio and has demonstrated reliability in space applications.

12.7.2.3 Battery Charge Regulator

The battery charge regulator controls the rate at which the battery is charged. It's primary

function is to float the battery at a constant potential when the battery is in a fully charged

condition. Following a discharge cycle, the battery charge regulator must maintain the

charging current below a prescribed limit until the battery voltage rises to the floating

potential. There will be a decrease in the current from the current limit coincident with

the increase in battery voltage.

The battery charge regulator would consist of a compound pass transistor to regulate the

charge current, a resistance divider sampling circuit in shunt with the battery, a constant

voltage diode reference, a single transistor stage comparison circuit and error amplifier,

a current limiting emitter resistor, and an over-current sensing transistor to hold the

pass transistor at the current limit. A resistor from the main bus in series with the voltage
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reference ensures that sufficient current is always supplied to keep the voltage reference

diodes in the low impedancebreakdown region.

The constant voltage reference would consist of two 6.2-volt temperature compensated,

voltage-reference diodesand a conventional silicon diode in series to compensatefor the

emitter base junction voltage changewith temperature of the comparison stage.

12.7.2.4 Power Control Unit

The power control unit would perform power circuit switching to direct power to users as

required by the mission and actuate squib firing circuits for separation and deployment.

The primary functions would include:

ao

Do

co

d.

Transfer of the load from the auxiliary ground power unit to the vehicle battery

during prelaunch checkout

Switch power to various parts of the load, such as the attitude control subsystem

or transmitter, on signals from the command decoder, programmer, or prelaunch

checkout console

Switch power to fire separation or deployment squibs

Disconnect the main bus power at the end of useful mission life.

Squibs are activated by gating a silicon controlled rectifier to apply power to the squib

bridgewire° The power pulse would be drawn from the battery. A thermal fuse element

breaks the circuit in the event that a bridgewire shorts, and opens the power drain path

from the battery. Series current limiting resistors allow limiting of the total current to

the amount necessary to fire, and current division to synchorinize the thermal fuse to

allow a minimum time to fire the squib under worst case conditions.

Noise suppression circuits would prevent misfire of the controlled rectifier or transistors

by requiring a minimum volt-second pulse necessary to turn on the switch that is significantly

greater than any expected noise levels.
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The power switching would be accomplishedby latching power relays with transistor buffers.

The input switching signal would consist of a short medium voltage.

12.7.2.5 Harnesses

Harnesses would be required to conduct power between the components of the power supply

subsystem and to the power users. The harness would be divided into two parts. The power

harness would conduct power and control signals between the components of the power sub-

system. The power distribution harness would conduct power from the power control unit

to the user subsystems. The harnesses will be terminated in connectors to provide rapid

removal of components.

12.7.3 SIZING OF POWER SUPPLY

In this section the solar array and battery sizes are determined for the power requirements

outlined in Section 12.6.

The following nomenclature is employed in this analysis.

P
sa

P
c

C

0_

f

¥
t

C

= The power output of the solar array measured at the array, watts

= Continuous power requirement during daylight portion of the orbit, watts

= Energy taken from the battery per cycle, watt-hours

= Nominal capacity of battery, ampere-hours

= Maximum battery overcharge rate per ampere hour of discharge

= Minimum battery overcharge required per ampere-hour of discharge

= Ratio of discharge to charge time

= Average load on the battery, amperes

= Battery charge time, hours
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t d = Battery discharge time, hours

r/b = Battery charge - discharge efficiency

?Td = Diode and harness efficiency

_cc = Battery charge control efficiency

t?p c = Power control unit efficiency

_h = Harness efficiency between the battery and the load.

Based on past hardware design experience representative values for these efficiencies are:

% = See Figure 12-30

r/d = 0.96

_cc = 0.94

_pc =

=

0.97

0.98

These values are used in this analysis.

The following design philosophy will be used in sizing the power supply. The power required

during the dark portion of the orbit, plus the small peaks that occur during the daylight

segment will be supplied by a rechargeable nickel-cadmium battery. The solar array will

be sized to provide the constant daylight power requirements plus the energy necessary to

charge the battery.

As a sample calculation consider the power requirements for Mission A, given in Figure 12-25.
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12.7.3.1 Solar Array

The energy taken from the battery per cycle, Eb, is

E b
watt-hrs required during dark

?pc vh

+
watt-hrs required during daylight peaks

?pc ?h

51.4 x 24 + (63.4 - 51.4) 12 + 196.4-51.4) 3

0.97 x 0.98 x 60

+ (69.5-65.5) 10 + (69.7-65.5) 15
0.97 x 0.98 x 60

= 28.5 watt-hours.

The solar array output must be sufficient to supply the constant portion of the daylight power

requirements plus the energy necessary to charge the battery.

Therefore,

P i [Eb P]c
sa ?d ?cc ?b tc ?pc ?h

1 [ 28.5 + 65.5 10.96x0.94 0.67xl.67 O.97x0.98

= 99.5 watts.

In this orbit the solar array power output is 7.22 watts per square foot (see Table 12-9).

Therefore, the required solar array area is:

99.5
Solar Array Area 7.22 13.8 square feet.
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From Table12-8, the solar array panel will have a specific weight of 1.10 pounds per square

foot. Therefore, the solar array weight is:

Solar Array Weight = 13.8 x 1.10 = 15.1 pounds.

12.7.3.2 Secondary Battery

Knowing the energy taken from the battery each cycle allows the battery capacity to be

calculated. The following assumptions are made in estimating the performance of sealed,

rechargeable nickel-cadmium batteries:

a. Battery capacity, including the case but not including thermal control is assumed

to be 9 watt-hours/pound for 100 percent depth of discharge. A volume of 14

cubic inches per pound is assumed.

b. Constant current charging is assumed throughout the charge and overcharge period.

Co The maximum allowable current during the overcharge condition is assumed to

be that which will supply 100 percent ampere-hour capacity in a period of six hours.

This value is based on past experience. Charging currents in excess of this are

considered to run too high a risk of battery failure due to excessive generation of

gas and build-up of internal pressure. In addition high charging currents create

heating problems.

d. The maximum depth of discharge for repeated cycling is assumed to be 60 percent.

For charging times less than 4.5 hours, the maximum allowable current during

the overcharge condition as noted in (c) above, will determine battery size, and

the depth of discharge will be less than 60 percent, varying linearly with charge

time up to 4.5 hours. For charge times greater than 4.5 hours, the charging rate

is cut back from the six-hour rate in order to hold depth of discharge at 60 percent.
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e. The excess ampere-hours of overcharge required to maintain continuous cycling

is assumedto be 25 percent for a six-hour charging rate.

f. For purposes of calculating charging efficiency of the battery, defined as the ratio

of the watt-hours delivered during discharge to the watt-hours put back into the

battery during the charge plus overcharge period, it is assumed that the average

discharge and charge voltages are 1.2 and 1.43 volts per cell respectively. This

assumption, together with the assumptions of (e), results in a variation of charging

efficiency with actual charging time as indicated in Figure 12-30. Test data indi-

cates that these voltage assumptions are reasonable.

The preceding assumptions are based on the General Electric Spacecraft Department's

experience with the use of rechargeable nickel-cadmium batteries for space applications.

Since the time available for recharging the battery is less than 4.5 hours the battery capacity

is defined by overcharge limitations rather than depth of discharge limitations (see assump-

tion (d) above). For the overcharge limited case the battery capacity is given by

ILl ]C - _ f(l+_) ,

where C = Nominal capacity of battery, ampere-hours

= Maximum overcharge rate per ampere-hour of capacity

B = Minimum overcharge required per ampere-hour of discharge

f = Ratio of discharge to charge time

IL = Average load on the battery in amperes.

Based on the power profile given in Figure 12-25 and the assumptions listed previously the

governing parameters are:

24 min

100 min
- 0.24
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63 watts (avg) = 2.25 amperes
IL - 28 volts

= 1/6 (see assumption c)

fl = 0.25 (see assumption d)

Substituting these numerical values yields the required battery capacity.

C = 2.25x6 I0.24 (i+ 0.25)]

= 4.05 ampere-hours

The maximum battery depth of discharge would be:

28.5 x 100
Secondary battery depth of discharge = 4.05 x 28

Assuming 9 watts-hours/pound and 14 cubic inches per pound for a 100 percent depth of

discharge the battery weight and volume are:

Secondary battery weight -
4.05 x 28

9 - 12.6 pounds.

Secondary battery volume = 12.6 x 14 = 176.0 cubic inches.

12.7.3.3 Primary Battery

A non-rechargeable (primary) silver oxide-zinc battery would be used to supply the power

required during initial stabilization of the spacecraft. The power required during this

period was established in Section 12.6.1 as 14.2 watt-hours.

Flight experience with primary silver oxide-zinc batteries, in this size range, indicates

(Reference 12-2) that typical specific weight and volume figures are 20 watt-hours per pound

and 25 cubic inches per pound respectively. These figures are for the total battery package

including the case.
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It is obvious from these figures that the primary battery weight andvolume will be very

small. Sincethis is the case the battery capacity will be doubledto allow a large safety

factor in case initial stabilization takes longer than estimated. Therefore,

primary battery weight -
14.5 x2

2O - 1.5 pounds and

primary battery volume = 1.5 x 25 = 37.5 cubic inches.

12.7.3.4 Power Conditioning Equipment and Harness

Based on past spacecraft hardware experience, typical specific weight figures (Reference

12-2) for the battery charge regulator, power control unit and solar array harness are 31,

8 and 13 pounds per kilowatt of solar array output respectively. Therefore

weight of battery charge regulator
99.5

= 31 x--
1000

3.1 pounds,

99.5
weight of power control unit = 8 x--

1000

O.8 pounds, and

99.5
weight of harness = 13 x 1000

I.3 pounds.

A typical specific volume figure for power conditioning equipment (including packaging) is

30 cubic inches per pound. Therefore

volume of battery charge regulator = 3.1 x 30 = 93 cubic inches, and

volume of power control unit = 0.8 x 30 = 24 cubic inches.
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12.7.3.5 Summary,

The calculations outlined in Sections 12.7.3.1 through 12.7.3.4 were repeated for Missions

B and C. The results for all three are summarized in Table 12-13 and 12-14.

12.8 SUMMARY AND CONCLUSIONS

A block diagram of the proposed power subsystem design is given in Figure 12-28. During

the initial stabilization period, between the time when the spacecraft is separated from the

launch vehicle until the solar panels are deployed and oriented to the sun, the power re-

quirements would be supplied by a primary silver oxide-zinc battery.

After the spacecraft is in normal orbital operation the power required during the dark por-

tion of the orbit, plus the peaks occurring during the daylight period, would be supplied by

a rechargeable, sealed nickel-cadmium battery. N on P silicon solar cells would be used

to supply the continuous daylight power requirements plus the energy required to recharge

the battery.

The proposed spacecraft power supply design is based on components and techniques which

are well developed and no technological breakthroughs are required to develop such a

system.

The assumed solar cell performance factors are summarized in Table 12-12. A summary

of the major subsystem performance parameters are given in Table 12-13 and the subsystem

weight and volume estimates are presented in Table 12-14.

The degradation resulting from radiation induced surface effects on transistors and diodes

should be investigated further. To do so will require detailed circuit designs which were

beyond the scope of this study. It appears that radiation induced surface effects could

represent significant spacecraft weight and/or life penalties but no firm conclusions can be

drawn until this area is investigated further.
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Table 12-12. Solar Cell Performance Factors

Factors Mission A Mission B Mission C

Type of Solar Cell

Efficiency of Bare Cell, 7o
(Free Space, 85°F}

Manufacturing Loss Factor

Ultraviolet Degradation Factor

Micrometeorite Loss Factor

Packing Factor

Temperature- Efficiency Dependence,
7oper OF

Solar Constant Variation Factor

Filter Transmittance Factor

Radiation Degradation Factor

Cover Glass Thickness, Mils

Filter Type

Filter Cut OnWavelength, Microns

Filter Cut Off Wavelength, Microns

Solar Cell Temperature, OF

Solar Array Specific Powera,
Watts/Square Foot

N/P

11

0.97

0.95

0.95

0.90

-0.26

0.966

0.92

0.71

15

Blue-Red

0.43

1.09

78

7.22

N/P

ll

0.97

0.95

0.95

0.90

-0.26

0.966

0.92

0._A O_

6

Blue-Red

0.43

1.09

100

8.07

N/P

11

0.97

0.95

0.95

0.90

-0.26

0. 966

0.92

0.86

6

Blue-Red

0.43

1.09

112

8.0

Note:

a - Minimum output during mission life.

Table 12-13. Summary of Power Subsystem Performance Parameters

Performance Parameters

Solar Array Output, Watts

Solar Array Area, Ft 2

Secondary Battery Capacity, Watt-Hours

Primary Battery Capacity, Watt-Hours

Mission A

99.5

13.8

113.5

28.4

Mission B

115.5

14.3

250

35.6

Mission C

146

18.3

256

28.4

12-69



!

o

o
op'4

<

o

o_

O °_

_A

o_

A

h_

A

h_

L_.

h_

A

h_

o _ o
0

o

o
r_ r/l

r/l

.<

o

12-70



12.9 REFERENCES

12-1 A.J. Dennison, "The Illumination of a Cell Surface in Space Due to the Sunlight Re-

flected from the Earth," General Electric, Missile and Space Division, Report No.

TIS-61SD101.

12 -2 D. Kerr and E. Williams, "Performance Estimates of Recommended Space Power

Systems for the 1964-1966 Period," an internal General Electric Spacecraft Department

Report, No. PIR 9741-045, March 19, 1963.

12-71/72



SECTION13

SPACECRAFTCONFIGURATION

PRINCIPAL CONTRIBUTORS:

J. H. Paul
R. E. Biddiscombe
R. L. Ewing



SECTION13

SPACECRAFTCONFIGURATION

13.1 INTRODUCTION

This section takes the primary experiment, the secondary experiments and the subsystem

components defined in the preceding sections and integrates them into a spacecraft

configuration. Due to the close similarity between the mode of operation, the components

to be included on-board, and the launch vehicles, it was possible to design one basic

configuration that would handle all three missions. Some component changes must be made

for the different cases but the basic spacecraft structure is the same for Missions A, B and

C. This approach offers the advantage of allowing several different missions to be flown

with the same basic spacecraft, thus increasing the program flexibility and reducing the cost

if more than one of the missions are undertaken.

The constraints imposed on the spacecraft configuration are presented and the various

configurations considered in developing the proposed design are discussed. The selected

configuration is described in detail and spacecraft weight breakdowns presented for Missions

A, B, and C. Calculation of the spacecraft center of pressure, center of gravity and

moments of inertia for the Mission A vehicle are presented. These values were considered

typical for all three missions and were used in Section 11 to estimate the disturbance

torques acting on the spacecraft.

13.2 DESIGN CONSTRAINTS

The design constraints with which the spacecraft configuration must be compatible are

discussed in this section.
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13.2.1 LAUNCH VEHICLE PAYLOAD-ORBIT CAPABILITY

The launch vehicle and orbits were selected for Missions A, B, and C in the Mission

Analysis phase of the study (see Section 6-Volume II). The selections are summarized below.

Miss ion Orbit Launch Vehicle

A Modified sun-synchronous IMPROVED DELTA

1000 nautical mile altitude, DSV-3E

101.84 degrees inclination

B Highly elliptical, 200 nautical IMPROVED DELTA

mile perigee, 25,000 nautical DSV-3E

mile apogee, 45 degree
inclination

C Low altitude circular, 325 IMPROVED DELTA

nautical mile altitude, 30 DSV-3H

degree inclination

These selections were based on the assumption that the total spacecraft weight would be

approximately 350 pounds. Therefore, the chosen spacecraft configuration must be

consistent with a total spacecraft weight that the selected launch vehicle can place in the

desired orbit.

13.2.2 COMMON SPACECRAFT CONFIGURATION

Because of the close similarity between the mode of operation, the components to be included

on board, and the launch vehicles, it was considered desirable and feasible to design one

spacecraft configuration that would handle all three missions.

The common spacecraft configuration chosen must be compatible with direct mounting to the

IMPROVED DELTA second stage or to the X-258 third stage since both versions are

employed in the three missions being considered. This compatibility would be provided by

changes in the adapter design. The spacecraft release and separation mechanism would

remain the same in each case.
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13.2.3 LAUNCH VEHICLE FAIRING

The available IMPROVEDDELTA fairing envelopeswith andwithout the X-258 third stage

motor are shownin Figure 13-1. The only difference in these fairings is the length of the

cylindrical section. The Mission A and B spacecraft must be compatible with the fairing

shownon the right of the figure since they use the DSV-3E version of the IMPROVEDDELTA.

The Mission C spacecraft can use either of the two secondstage direct mounting fairings

since it uses the DSV-3H launch vehicle which doesnot employ a third stage. The available

length of the fairings doesnot create any serious spacecraft configuration problems, but

the minimum allowable payload diameter of 57 inches represents a significant constraint.

If the 50 inch diameter solar concentrator is oriented with its axis in the launch direction

very little space is left for mounting the secondaryexperiments that also require sun

orientation. Since the Solar Reflective SurfacesExperiment alone is 24 inches in diameter

this approachwould necessitate deploying at least some of the secondary experiments.

A possible alternative would be to mount the solar concentrator with its axis normal to the

launch axis, andutilize the height of the fairing envelopefor mounting the sun-pointing

secondary experiments on either side of the solar concentrator. This is considered further

in Section 13.3.

13.2.4 SPACECRAFT ORIENTATION

The spacecraft stabilization approachchosenis to mount the solar concentrator and

thermionic generator rigidly to the spacecraft body andthen point the entire vehicle to the

sun (seediscussion in Section 11.1). This approach eliminates any requirement for the

thermionic system to movewith respect to the spacecraft body which simplifies the space-

craft structure. It also makes it relatively easy to provide sun-pointing for the solar cell

array and secondary experiments that have this requirement. In addition, orientation of

the total spacecraft to the sun tends to stabilize the thermal condition of the vehicle during

the daylight portion of the orbit.
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13.2.5 CENTER OF PRESSURE/CENTER OF GRAVITY RELATIONSHIP

Because of the necessity to minimize disturbance torques on the spacecraft, it is very

desirable that the spacecraft center of pressure be in line with the center of mass when

viewed from the sun direction. This condition was easier to achieve with some of the

configurations considered than with others, and therefore represented one of the major

factors considered in selecting the spacecraft configuration.

13.2.6 INERTIA RATIO

The requirement to minimize disturbance torques on the spacecraft also necessitates

keeping the mass moments of inertia about the principal axes as nearly equal as possible

in order to minimize the gravity-gradient effects. It is generally not possible to keep the

inertias exactly equal but keeping them as close as possible was a consideration in

selecting the spacecraft configuration.

13.2.7 SOLAR ARRAY AREA

The required solar array area was sufficient in all three cases to rule out consideration of

any approach other than deployable, sun oriented, solar cell panels. Packaging the required

solar array area within the fairing constraints did not prove to be a difficult problem. Of

greater significance was ensuring that the solar array panels unfolded to a position that

resulted in a satisfactory center of pressure/center of gravity relationship, as discussed

in Section 13.2.5.

13.2.8 SOLAR THERMIONIC SYSTEM

The restraints imposed by the 50-inch diameter, solar concentrator were discussed in

Section 13.2.3. Since it is desirable to minimize blockage of the solar concentrator the

minimum number of three struts were used for supporting the thermionic generator from

the concentrator torus. For stiffness, and to minimize vibration inputs to the thermionic
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system during launch, it was considered desirable to mount the concentrator to the space-

craft at these same three points (i. e. the intersections of the three generator support struts

with the concentrator torus). This was therefore a consideration in determining the size and

shapeof the spacecraft body.

13.2.9 SECONDARYEXPERIMENTS

Consideration was given in selecting the spacecraft configuration, to compatibility with the

priority "A" and"B" secondary experiments outlined in Section 5.4.2 of Volume II. It was

considered essential that the priority "A" experiments be included on the vehicle as long as

they did not compromise the primary experiment. It was also considered very desirable to

include as manyof the priority "B" experiments as could be integrated into the design

within the weight limitations. Since Section 10 established that the telemetry subsystem

could handle all thirteen of the priority "A" and "B" experiments the only remaining barrier

to their inclusion on the vehicle would be incompatibility with the spacecraft configuration,

or weight limitations.

The difficulty of locating the secondary experiments that require sun-pointing was referred

to in Section 13.2.3. The largest experiment of this type is the Solar Reflective Surfaces

Experiment which is 24 inches in diameter andhas an estimated weight for this application

of 27pounds. Locating this experiment andthe other sun-pointing experiments in a

position where they were sun oriented and still allowed the spacecraft to be well balanced

was a difficult constraint to meet.

13.3 SPACECRAFT CONFIGURATIONS CONSIDERED

Several possible spacecraft configurations were considered before the proposed design was

selected. Figure 13-2 shows four of the concepts considered. The advantages and dis-

advantages of each of these are discussed in the following sections.
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13.3.1 CONFIGURATION A

This configuration consists of two deployable panels diametrically opposed and attached to a

hexagonal spacecraft body. The secondary experiments requiring sun-pointing are mounted

on the inboard faces of the panels, and the outboard faces are used for solar cell panels.

The thermionic generator is mounted to the spacecraft body with the axis of the solar

concentrator oriented in the launch direction and the three mounting points coincident with

three corners of the six-cornered spacecraft body.

In the launch configuration, the two panels would be folded upward so that their edges met

and latched together with a single pyrotechnically activated pin-puller. The single gas tank

is mounted in the center of the vehicle body and the equipment mounted in modular fashion

to the sides of the vehicle body.

A six-point tie-down to the adapter would be achieved by a band-clamp running around the

six corners of the spacecraft body, and separation achieved by multiple springs.

The principal advantages of this configuration are-

a. The thermionic generator is rigidly supported at three points that transmit load

directly through the corners of the vehicle body to the adapter.

b. The solar array and experiment panels form an inherently stiff structure when

folded in the launch configuration.

c. The solar and experiment panels can be deployed by a single pyrotechnic device

providing high reliability.

d. The simplicity of the structure and mechanisms required for this configuration

result in a minimum weight structure.
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The principal disadvantageof this configuration is the unbalanceof inertias aboutthe pitch

and yaw axeswhich results in unacceptablegravity-gradient disturbance torques. The

proposed configuration (see Figure 13-3) reduces this effect considerably andwas a direct

outgrowth of Configuration A.

13.3.2 CONFIGURATIONB

In Configuration B anattempt has beenmade to exposeone face of the spacecraft body to the

sun, so that the secondarysun-pointing experiments can be mounted in the vehicle body and

donot have to be deployedonpanels as in Configuration A. However, this necessitates de -

ploying the thermionic system through 180degrees after separation from the launch vehicle.

A hexagonalvehicle body, similar to Configuration A, is used in this approach, but the two

solar array panels andthe thermioni c system are located 120 degrees apart around the

body to provide a goodcenter of pressure/center of gravity relationship.

The advantagesof being able to locate all the secondary experiments in the vehicle body

are offset by the following disadvantages:

a.
Because of the sensitive nature of the solar concentrator structure and the

concentrator-generator alignment it is considered highly undesirable to have to

deploy the thermionie system.

b. If this approach were taken a sizable weight penalty would be incurred for the

deployment structure associated with the thermionic system.

eQ Only three faces of the vehicle body are well suited for active thermal control.

This limits the surface area available for mounting equipment that has high heat

rejection requirements.
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d. The solar array panels would not be as rigidly supported as they were in

Configuration A, when folded in the launch configuration.

e. The deployment reliability is less since three mud perhaus four pyrotechnic

devices must be fired to deploy the solar array panels and the thermionic system.

13.3.3 CONFIGURATION C

Configuration C represents an attempt to provide sufficient surface area for both the solar

thermionic system and the secondary experiments, without having to deploy either.

In this approach, the axis of the solar concentrator is oriented at 90 degrees to the lon-

gitudinal launch vehicle axis. The spacecraft equipment and secondary experiments are

contained in two boxes located on either side of the concentrator. The two equipment

boxes are joined by a lightweight truss structure which is also used for mounting the solar

concentrator. Two solar array panels are hinged off the truss structure and are folded up

in the launch configuration and deployed after orbit injection.

The major advantage of this approach is that both the primary and secondary experiments

are fixed and only the solar array panels have to be deployed. However, this advantage is

outweighed by the following disadvantages:

a. To produce a sufficiently stiff vehicle(as well as an acceptable vibration

environment for the experiments) would require excessive structural weight.

Do The unsymetrical condition created by cantilevering the thermionic generator

from the solar concentrator torus, makes the possibility of holding the close

alignment requirements between the concentrator and the generator through the

launch phase questionable.
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et The shape and nature of the lower equipment box makes the task of mounting this

vehicle to the second or third stage of the IMPROVED DELTA a difficult one,

resulting in greater structural weight.

do With no appreciable exchange of heat between the two equipment boxes, thermal

balance of this vehicle will be difficult to achieve, even with active temperature

control.

13.3.4 CONFIGURATION D

Configuration D was an attempt to improve the structural and thermal characteristics of

Configuration C . However, like Configuration C the structural support of the solar

concentrator and the thermionic generator during launch is a major problem. This design

possesses the (b) and (c) disadvantages given in Section 13.3.3 with the following additional

disadvantages.

a. The center of pressure/center of gravity offset of this configuration is considered

unacceptable.

Do The location of antenna stubs to achieve an approximately isentropic pattern has

not been referred to in Configurations A through C since these designs rate about

equal from this standpoint. However, it would be more difficult to achieve the

desired antenna pattern with Configuration D than with Configurations A through C.

13.3.5 COMPARISON EVALUATION

The four configurations presented in Figure 13-2 plus the selected configuration given in

Figure 13-3 were compared on the basis of ten major design parameters. The five

configurations were compared in relation to each parameter and ranked from 1 to 5 in order

of preference, with one representing the highest rank. If each of these parameters is

considered to be of equal importance then the spacecraft configuration with the lowest total
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when all of the ranking factors are added represents the most attractive spacecraft

configuration. This procedure was followed and the results are presented in Table 13-1.

On this comparison basis the "proposed approach" is the most attractive with Configuration

A being a close second.

Since it is doubtful if all of the parameters on which the spacecraft configurations were

compared are of equal importance the value of the sum totals at the bottom of the Table

13-1 are debatable, and this was only one of many inputs considered in selecting the final

spacecraft configuration. However, the relative ranking of the five configurations on a

particular parameter are considered valid and provide insight into the reasoning used in

arriving at the proposed configuration.

13.4 PROPOSED SPACECRAFT CONFIGURATION

The proposed spacecraft configuration is shown in Figure 13-3. This design was established

as a result of the requirements and concept evaluations outlined in Sections 13.2 and 13.3.

However, once it became apparent that the required configuration bore many similarities

to the Mariner C vehicle, knowledge of that flight proven design was drawn upon in arriving

at some of the design features. This was done deliberately since it was felt that knowledge

of flight proven hardware should be made use of wherever possible. The use of existing

hardware, which has been flight proven, offers the advantages of higher reliability, shorter

development schedules, and lower cost.

13.4.1 SPACECRAFT BODY AND EQUIPMENT PACKAGING

The spacecraft body is an eight-sided prism with flat ends. The components are mounted

in modular fashion to the eight side panels (see panel layouts Figure 13-3). As far as

possible all of the components comprising a specific subsystem are located on the same

panel. This simplifies assembly and checkout of the spacecraft. In order to obtain the

desired center of gravity location and balance the moments of inertia it was not possible to

follow this rule in all cases. Four of the eight spacecraft sides have active thermal control
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Table 13-1. Comparison Evaluation of Spacecraft Configurations

FARAMETER

Rigidity of Thermionic System

Support

Proposed

2

CONFIGURATION

A D

Necessity to Deploy Experiments 3 4 1

Center of Pressure/Center of 1 2 5

Gravity Relationship

Inertia Ratio 1 4 5

Mechanical Simplicity 4 3 2

2Compatibility with Lightweight

Structural Design

Compatibility with Good Thermal

Design

4

Compatibility with Launch Vehicle

Interface

4

2

4

Ease of Equipment Packaging 1 2 4

3 1 5

B C

3 5

5 2

3 4

2 3

5 1

3 5

1 5

3 5

3 5

2 4

30 39

Ease of Achieving Desired Antenna

Pattern

TOTALS 21 24 36
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(refer to Section 13.4.5}. The remaining four sides are used for mounting the attitude

control nozzles, the telemetry antenna, the acoustical sounding plates associated with the

mierometeoroid secondary experiment and the engines required for the secondary low

thrust electric engine experiment.

The lower octagonal face of the vehicle body is used for mounting the experiments and

sensors that must see earth. This end of the spacecraft mates with the truncated conical

adapter. The upper octagonal face of the vehicle body is used for mounting the solar

thermionic system. Four deployable panels, hinged off this upper face, are used for

mounting solar panels and the sun-pointing secondary experiments. The spacecraft body is

built from two octagonal machined frames joined by vertical members at the eight corners.

Hinge fittings for the four deployable panels and support fittings for the solar thermionic

system are bolted to the upper machined frame.

The octagonal ends of the body are partially closed by light honeycomb panels. Four faces

of the body have temperature control louvers mounted to their exterior faces. The remaining

four faces are covered with a multilayer superinsulation, except for the cut-outs required

for sensors, attitude control nozzles, etc.

The attitude control gas tank and associated hardware are mounted on a trusswork in the

center of the vehicle body. This location was chosen to minimize the center of gravity shift

with gas usage.

All machined parts of the body are magnesium, and all body panels are aluminum. Body

panels are generally sized by some dynamic criterion, in which case very little advantage

can be shown for the use of magnesium over aluminum.

13.4.2 SOLAR ARRAY PANELS

As shown in Figure 13-3, the solar array consists of two rectangular hinged panels providing

approximately 14 square feet of solar array area for Missions A and B and 18 square feet
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for Mission C. The solar cells are mountedon aluminum channels, each channel

constituting a solar array module (see Figure 12-29 in Section 12.7.2.1). These channel

sections are supported andstiffened by two sheet metal members running lengthwise, at

90 degrees to the longitudinal axis the module channels, and terminating in magnesium hinge

fittings.

The two solar array panels andthe two secondary experiment panels are folded upward and

attachedto eachother to form a rigid structure during the launchphase. By means of a

linkage system, only two pyrotechnic devices, one on each solar cell panel, are required

to withdraw the four locking pins. The four panels are deployedindependentlyby means of

springs at their hinge points and lock positively in place upon reaching the deployedposition.

13.4.3 SECONDARYEXPERIMENT PANELS

The smaller secondary experiment panels are constructed in the same manner as the solar

array panels. However, in general, heavier gage materials would be used becauseof the

greater weight of the experiments they must support. The experiments could have been

mounteddirectly to a framework andthe panel sheet omitted. This approach was not taken

because it is desirable for each experiment panel to present the same surface area to the sun

in order to minimize the center of pressure/center of gravity offset.

The method of releasing anddeploying these panels is described in the preceding section.

13.4.4 THERMIONICSYSTEMMOUNTING

The proposed methodof mounting and aligning the solar concentrator andthermionic

generator is described in Section 8.3.3.
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13.4.5 THERMAL CONTROL

A detailed thermal analysis of the spacecraft was not conductedin this study but based on

past spacecraft design experience it is expectedthat for the missions considered the

spacecraft will require an active thermal control system*. Someof the conditions which

are expectedto necessitate active thermal control are:

a. The close temperature tolerances that must be maintained on such components

as the secondary nickel-cadmium battery (+50 ° to +90°F).

b. Components, such as the secondary nickel-cadmium battery, which have high heat

dissipation when being used and are not operated on a continuous basis.

c. The requirement for a long spacecraft life.

d. The long daylight exposure periods associated with Missions A and B.

e. The long shadow periods encountered with Mission B.

f. The frequent thermal cycling associated with Mission C.

The proposed active thermal control system is essentially the same scheme used on the

Mariner C spacecraft. The high heat dissipating equipment is mounted on the faces of the

spacecraft body that have active thermal control capability and reject their waste heat to

space by radiation. The amount of heat rejected is controlled by variable louvers attached

to the outside of the panel. Each louvered panel is controlled independently by a bi-metal

• *This needs to be investigated in detail. If the required spacecraft thermal environment

could be provided by a passive system the spacecraft design could be simplified slightly

and the weight probably reduced.

13-19



spiral spring that winds up and unwinds according to the temperature it sees, thus opening

or closing the louvers. The surface area exposed by opening the louvers is coated with a

high emissivity coating to promote radiation heat transfer.

The bi-metal actuator is located in a tunnel insulated on its exterior surfaces with super-

insulation. By this means the bi-metal actuator can be mounted so it only receives radi-

ated energy from the panel it is controlling. This method achieves better control of the

panel average temperature than if conducted heat were used, since with the latter method

the actuator would be more sensitive to local "hot-spots. "

In addition to the active thermal control system, the spacecraft thermal balance is main-

tained by the use of superinsulation and coatings on the other exposed surfaces.

Thermal control of temperature sensitive equipment mounted outside the spacecraft body is

achieved passively by the use of thermal coatings and insulation. This problem is simpli-

fied somewhat since during the daylight period the direction and magnitude of the solar

energy input is constant. However, if a detailed thermal analysis indicates that the temper-

ature of a piece of equipment mounted external to the spacecraft body, falls too low during

the dark period, or if the out-of-tolerance performance during the warm-up period is

unacceptable, electrical heaters would have to be added. Of course this would increase the

spacecraft power requirements.

13.4.6 SPACECRAFT MOUNTING AND SEPARATION

Two different truncated conical adapters are shown in Figure 13-3. Which one of these

adapters is used depends on whether the IMPROVED DELTA is used with or without the X-

258 third stage. The spacecraft release and separation system is similar for both cases.

The lower octagonal frame of the spacecraft body is machined to have a circular flange

approximately 55 inches in diameter. This flange forms one half of a marman clamp

attachment to a similar ring on the adapter. The two flanges are clamped together by a

series of vee-shaped shoes and a band clamp. The band clamp would be split at separation
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by a bolt cutter or similar pyrotechnic device, and the spacecraft would separate under the

action of four matched springs located at four of the eight corners of the vehicle body.

_',,,e ,_,,_,L_"'_-'^-for _,,_'-^_*_u_ mounting to the IMPROVED DELTA second stage is a simple sheet

metal truncated cone that grows from the 55-inch diameter at the spacecraft, to the approx-

imately 60-inch diameter that is necessary to mate with the DSV-3H's second stage.

The adapter for the X-258 third stage decreases from the 55-inch diameter at the space-

craft to the 18-inch diameter necessary to mate with the X-258. The yo-yo despin system,

required with the solid X-258, is mounted on the adapter. Other equipment, such as the

timer, squib battery, terminal boards, and balance weights are also mounted on the adapt-

er. The balance weights are necessary since in this configuration the spacecraft/X-258

assembly must be balanced to achieve the close center of gravity and principal axes align-

ments required as a result of having to spin-up this assembly on the IMPROVED DELTA

second stage.

13.5 SPACECRAFT WEIGHT AND BALANCE CALCULATIONS

This section contains the spacecraft weight estimates for Missions A, B, and C. The re-

quired location of the components within the spacecraft body are determined in order to

balance the Mission A spacecraft. Also included are the center of gravity, center of pres-

sure and moment of inertia calculations for the Mission A vehicle. The Mission A case is

considered typical of the three missions and the center of pressure/center of gravity re-

lationship and inertia imbalance were used in Section 11 to estimate the disturbance torques

acting on the vehicle. The magnitude of these disturbance torques sized the attitude con-

trol subsystem.

13.5.1 WEIGHT ESTIMATES

Table 13-2 presents a spacecraft weight breakdown for the three missions. The resulting

weight totals are:
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Spacecraft weight Mission A - 360.1 pounds

Spacecraft weight Mission B - 373.3 pounds

Spacecraft weight Mission C - 404.0 pounds.

These weights do not include the adapter, or in the case of Missions A and B, the yo-yo

despin system*. These weights are considered chargeable to the launch vehicle. The

launch vehicle performance curves presented in Section 2.4.3, in Volume II, are based on

this assumption.

The differences in the total spacecraft weights result primarily from a difference in the atti-

tude control and power subsystem weights. The remaining subsystems and experiments

weigh approximately the same for all three missions. The power subsystem weight in-

creases with Missions A through C because the light to shadow ratio becomes progressively

worse. The unfavorable light to shadow ratio results in a secondary battery weight which

for Missions B and C is more than twice that for Mission A. The attitude control subsystem

weight is approximately ten pounds higher for Mission C than for Missions A and B, because

of the additional gas required for the pneumatic system. The higher gas requirement occurs

because the low altitude of the Mission C orbit results in significantly higher gravity

gradient disturbance torques.

13.5.2 SPACECRAFT BALANCE

The component locations shown in Figure 13-3 were selected in order to balance the Mission

A spacecraft in the "spin condition" shown in Figure 13-4. Since it is essential that the

spacecraft be accurately balanced in the spin condition (see discussion Section 13.6.5) the

components were located to provide the required balance and the resulting center of gravity

location in the orbit condition (see Figure 13-4) accepted.

*A despin system is not required for Mission C because the DSV-3H launch vehicle does

not employ the spin stabilized X-258 third stage motor.
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Table 13-2. SpacecraftWeight Breakdown

Subsystemand Component

ATTITUDE CONTROL

Mission A
Weight

(Lb)

(65.9)

Momentum Flywheel (2)

Roll, Pitch, Yaw Gyros and Electronics

Power Supply (AC and DC) 11.

11.0

11.0

5

Mission B

Weight

(Lb)

(59.2)

9.0

11.0

11.5

Sun Sensors and Electronics

Programmer and Logic

Attitude Control Electronics (3)
IR Sensors and Electronics

Thermal Sensors

Pneumatic System

Gas (Nitrogen)

.

2,

7.

1.

O.

19.

3.

2.0

2.5

7.0

1.0

0.2

15.0

0.9

Tank 4.

Fill and Check Valves and Filters 2.

Pressure Transducer (2) 0.

Regulator 2.

Solenoids (7) 2.

Nozzles and Orifices (8) 1.

1.5

2.2

0.8

2.5

2.8

1.0

Relief Valve

Lines, Fittings, Clips, Bracketry 2.

POWER SUPPLY (34.

Primary Battery 1.

Secondary Battery 12.

Charge Regulator 3.
Power Control Unit 0.

Solar Array Harness 0.

Inflight Disconnect 0.

Solar Array 15.

Structure and Restraints 6•

Solar Cells 9.

4)

5

6

1

8

8

5

1

0

1

2.

(49.

.

27.

3.

O.

O.

O.

14.

6.

8.

8

5

s)

8

8

6

9

8

5

4

2

2

Mission C

Weight

(Lb)

(75.5)

17.0

11.0

11.5

2.0

2.5

7.0

1.0

0.2

23.3

4.5

6.2

2.2

0.8

2.5

2.8

1.0

.8

2.5

(55.6)

1.5

28.5

4.5

1.2

1.0

0.5

18.4

7.9

10.5
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Table 13-2. (Cont.) Spacecraft Weight Breakdown

Subsystemand Components

TELEMETRY, TRACKINGAND COMMAND

Mission A
Weight

(Lb)

(43.8)

Mission B

Weight

(Lb)

(46.8)

Antenna and Connectors

Diplexer (Antenna)

Command Receiver (2)

Command Recoder (2)

1.0

1.0

3.0

5.4

1.0

_mB_

3.0

5.4

Magnetic Core Storage Units (2.5 lb ea. )

Storage Control Circuitry
PCM Encoder

TT&C Power Converter

Signal Conditioners

Transmitter and SCO (2)

Tracking Beacon

Programmer

Multiplexer (Antenna)

Magnetic Tape Recorder

Tracking Transponder

Coax Cabling

SECONDARY EXPERIMENTS

Solar Cell Radiation Effect

Thermal Coatings
Solar Concentrator Reflective Surfaces

Infrared Detector

Laser Experiment

Low Thrust Electric Engine
Micrometeoroid Detection

Proton and Electron Spectra and Direction

20.0

1.0

3.0

2.0

1.0

1.4

1.0

2.0

m----

2.0

(82.8)

0.5

2.0

27.0

3.0

10.0

2.3

8.0

8.0

--m--

3.0

2.0

1.0

1.4

2.0

1.0

20.0

5.0

2.0

(82.3)

2.0

27.0

3.0

10.0

2.3

8.0

8.0

Solar X-rays

Solar:/Rays
Earth Albedo

Ultraviolet Radiation

Lyman-Alpha

3.0

8.0

5.0

6.0

3.0

8.0

5.0

6.0

Mission C

Weight

(Lb)

(48.8)

1.0

1.0

3.0

5.4

25.0

1.0

3.0

2.0

1.0

1.4

1.0

2.0

2.0

(87.3)

--D--

2.0

27.0

3.0

10.0

2.3

8.0

8.0

3.0

8.0

5.0

5.0

6.0
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Table 13-2. (Cont.) SpacecraftWeight Breakdown

Subsystemand Components

PRIMARY THERMIONIC EXPERIMENT

Mission A
Weight

(Lb)

(38.2)

Generator 5.

Parabolic Concentrator Surface 9.

Generator Mounting Ring 0.

Mission B

Weight

(Lb)

(38.2)

5.7

9.8

0.3

Truss Tubes (3)

Tube Fittings (3)

Support Torus

Support Link (3)

Yoke (Includes Bearings) (3)

0.7

0.1

2.2

0.1

0.3

.

O.

2.
O.

O.

Support Fitting (Includes Bearings) (3) 0.

Tie-In Ring 0.

RTV Bond 0.

Control Electronics 6.

Generator Electrical Leads 7.

Reflect.meter

DIAGNOSTIC INSTRUMENTATION

Current Detectors

Voltage Detectors

Temperature Sensors

THERMAL CONTROL

t

(2.

.

0.

1.

(22.

Active Thermal Control (12 ft 2) 15.

Insulation (4.7 lb/ft 3 - 1/2 in thick,

0.20 Ib/ft2) 5.

Paint and Grease 0.

Heaters 0.

Mise 0.

HARNESSING (28.

8)

0)

4

6

5

5

0.3

0.2

0.5

6.0

7.0

5.0

( 2.

I.

0.

I.

(22.

15.

e

0.

0.

0.

8)

0)

4

6

5

5

Mission C

Weight

(Lb)

(38.2)

5.7

9.8

0.3

0.7

0.1

2.2

0.1

0.3

0.3

0.2

0.5

6.0

7.0

5.0

(2.8)

1.1

0.5

1.2

( 22. O)

15.0

5.4

0.6

0.5

0.5

4) (30.4) (32.0)
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Table 13-2. (Cont.) SpacecraftWeight Breakdown

SubsystemandComponents

STRUCTURE

Side Panels (Honeycomb)(8)
Top and Bottom Fill Panels
L's, T's (Framing)
Bulkheads (Internal)
Tank Support Structure and Fittings
Gussets and Misc. Structure
GSEFittings
Experiment Panels and Hinges (2)
Solar Platform Locks
Separation Ring and Band
Hardware

TOTAL SPACECRAFTWEIGHT

Mission A
Weight

(Lb)

(41.8)

9.6
4.8
9.2
3.7
1.6
0.3
0.8
3.3
0.8
3.9
3.8

360.1

Mission B
Weight

(Lb)

(41.8)

9.6
4.8
9.2
3.7
1.6
0.3
0.8
3.3
0.8
3.9
3.8

373.3

Mission C
Weight

(Lb)

(41.8)

9.6
4.8
9.2
3.7
1.6
0.3
0.8
3.3
0.8
3.9
3.8

404.0
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Figure 13-4. Reference Datum for Spacecraft Spin

and Orbit Configurations
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The equipment located on each of the spacecraft body panels and the total weight of the

panels is given in Table 3-3. The panel locations on the spacecraft are shown in Figures

13-3 and 13-4. The Mission A spacecraft balance calculations were performed using the

component locations defined by Figure 13-3 and the weights given in Tables 3-2 and 3-3.

An outline of these calculations is presented in Table 3-4. These calculations show that the

spacecraft center of gravity is on the roll, Z, axis in the spin condition as planned, and is

located 2.5 inches off the roll axis at station 192.8 in the orbit condition.

13.5.3 CENTER OF PRESSURE

In order to estimate the disturbance torques acting on the spacecraft it is necessary to

know the spacecraft center of pressure in the orbit condition. The center of pressure is

defined as the summation of the incremental areas times their distance from the reference

axis divided by the total area. This calculation was performed and indicates that the

center of pressure for the Mission A* spacecraft is located at station 193.6 on the roll

axis. The center of pressure would be expected to fall on the roll axis because of the

spacecraft symmetry about that axis.

The important center of pressure/center of gravity relationship is now defined. Looking

at the spacecraft in the orbit condition, from the sun direction, the center of pressure is on

the roll axis and the center of gravity is 2.5 inches off the roll axis. For the same orbit

condition a side view of the spacecraft shows the center of gravity to be 0.8 inch above the

center of pressure. These locations are shown in Figure 13-4 and the results are used in

Section 11 to compute the spacecraft disturbance torques.

*Since the center of pressure is based on geometry only it would have the same location for

the Mission B and C spacecraft as computed for the Mission A case.
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Table 13-3. Equipment Panel Arrangement

TT&C PANEL No. 1 (26.45 Pounds) EXPERIMENT PANEL No. 5 (Cont)

Structure 1.20
Programmer and Logic 2.50
TT&C Power Converter 2.00
TT&C Power Supply 11.50
Ultraviolet Electronics 4.50
AntennaDiplexer 1.00
Active Thermal Control 3.75

Solar X-Ray Electronics 2.50
Proton Electron Electronics 7.50
New IR Electronics 2.00
Power Control Unit 0.80
Active Thermal Control 3.75

ATTITUDE CONTROLPANEL No. 6 (22.35 Pounds)

EXPERIMENT PANEL No. 2 (16.95 Pounds)

Structure 1.20
Micrometeoroid Electronics 4.00
Laser Electronics 9.00
Low Thrust Electric Engine 0.15
Current and Voltage Detectors 1.60
Micrometeoroid Sensor 1.00

Structure 1.20
Gyro Pack and Electronics 11.00

Roll I
Yaw Electronics 7.00
Pitch
Low Thrust Engine Electronics 2.00
Low Thrust Engine 0.15
Micrometeoroid Sensor 1.00

POWERSYSTEMPANEL No. 3 (22.15 Pounds)TT&C PANEL No. 7 (21.75 Pounds)

Structure I. 20
Primary Battery i. 50
SecondaryBattery 12.60
ChargeRegulator 3.10
Active Thermal Control 3.75

TT&C PANEL No. 4 (22.20 Pounds)

Structure 1.20
Magnetic Core Storage 20.00
Micrometeoroid Sensor 1.00

Structure
CommandReceiver (2)
CommandDecoder (2)
Storage Control
Signal Conditioner
Transmitter SCO(2)
PCM Encoder
Programmer
Active Thermal Control

ATTITUDE CONTROLPANEL No. 8

1.20
3.00
5.40
1.00
1.00
1.40
3.00
2.00
3.75

(16.20 Pounds

EXPERIMENT PANEL No. 5 (30.75 Pounds)

Structure 1.20

Lyman-Alpha Electronics 5.50

Solar:_ -Ray Electronics 7.50

Structure

Yaw Flywheel

Pitch Flywheel
Sun Sensor Electronics

IR Sensor Electronics

Mierometeoroid Sensor

1.20

5.50

5.50

2.00

1.00

1.00

Note

Panel Locations shown in Figure 13-4.

13-30



o

o

o

"o

o

o

o

¢0

4
I

tO I

z

o_ i,

_o_,

&

.... _ _° _oo_ oo_oo_ o_

oo_ooo_ ......

o_o_ oo_ooo_

ooooooo_ oo_ooooooooooo

_ _ _i_ _ _ 0_

_ _-' _-_ o

o o _

oo _ oo

oo oo

_oo o_oo

13-31



13.5.4 MOMENTSOF INERTIA

Also of importance in computing the spacecraft disturbance torques and sizing the attitude

control subsystem are the moments of inertia about the principal axes. These were com-

puted for the Mission A spacecraft in the spin and orbit conditions andthe calculations are

outlined in Table 13-4. The moments of inertia were computed aboutthe spacecraft geo-

metric axes andthen translated to the control axes. The control axes are rotated 45 degrees

from the geometric axes (seeFigure 13-4). This rotation of the inertia to a new set of

axes is accomplishedby applying the following equations:

Ixl =I Cos 2 {}+I Sin 2 e-P Sin 2
x y xy

Iy 2=I Cos 2 {}+I Sin 2 e+ P Sin2y x xy

Where P is the product of inertia term and 0 is the angle through which the axis are
xy

rotated. Since products of inertia were not computed in this study, the P terms were
xy

neglected in rotating the axes. It is estimated that neglecting the product of inertia term,

resulting from the 2.5 inch center of gravity offset from the roll axis, yields afive percent

error in the inertias about the control axes. The resulting inertias about the geometric

and control axes are summarized in Table 13-5. These values were used in Section 11 to

design the attitude control subsystem.

13.6 SUMMARY AND CONCLUSIONS

The proposed spacecraft configuration is given in Figure 13-3 and the weight breakdown

for Missions A, B, and C presented in Table 3-2. The proposed design is representative

of the present state of the art in spacecraft construction and involves no unproven tech-

niques or materials.
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Table 13-5. Moments of Inertia

Condition

o

u

.

e

Spin Condition
Paddles Folded

Geometric Axis

Same As No. 1

except rotated

45 degrees to

Control Axis

Orbit Condition

Paddles Deployed

Geometric Axis

Same As No. 3

except rotated

45 degrees to
Control Axis

I -Yaw
OX

Slug-f('

41.0

44.3

30.8

35.2

I -Roll
OZ

Slug-ft z

31.0

31.0

49.3

49.3

I -Pitch
oy

Slug-ft 2

47.6

44.3

39.6

35.2

Note: Reference Axis Shown in Figure 13-4.
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13.6.1 SPACECRAFTWEIGHTS

The total spacecraft weights for Missions A, B, and C are 360, 373, and404 pounds,

respectively. In the mission analysis phase of the study the spacecraft weight was as-

sumed to be 350pounds andthe launch vehicle and orbit selections were made on that basis.

In all three cases the spacecraft weight is greater than the assumed350poundswhich raises

the questionof the heavier spacecraft weights being compatible with the launch vehicle and

orbit selections.

The Mission A spacecraft weight is just slightly over 350poundsand from Figure 2-42, in

Section 2.4.3 of Volume II, it is apparent that the DSV-3E canplace up to 500pounds in a

1000nautical mile polar orbit if the launch is made from the Western Test Range. The

Mission A orbit inclination is 101.84 degrees which will require slightly more launch capa-

bility than a polar orbit (90degrees inclination). However, based on the performance

shownin Figure 2-42 the DSV-3Ecan place the 360poundMission A vehicle in the required

1000nautical mile, modified sun-synchronous orbit, with an inclination of 101.84 degrees.

In this case there appears to be a substantial safety factor to work with since the DSV-3E

canprobably place as much as 450pounds in the required orbit.

The Mission B case is difficult to evaluate becausethere are no DSV-3E performance

curves available for a 45 degree inclined, 200 by 25,000 nautical mile elliptical orbit. How-

ever, Figure 2-30, in Section 2.4.3 of Volume H, provides some feel for this case. The

performance estimates presented in this figure are for a 33degree inclination and a

perigee altitude of 100 nautical miles. Based on information presented in this figure it

appears that the 25,000 nautical mile apogeealtitude could not be obtained with a 373-pound

spacecraft using a standard DSV-3E launch vehicle. It appears that the desired orbit alti-

tude could be obtained if N204/A-50 were used as the secondstagepropellants or if the
first stagewas floxed 30percent. If the standard DSV-3E propellants are used, an apogee

altitude on the order of 14,000 to 16,000 nautical miles appears to be the maximum obtaina-

ble. This leaves three alternatives:
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a. Lower the spacecraft weight

b. Accept a perigee altitude less than25,000 nautical miles

c. Flox the first stageor use N204/A-50 as the second stagepropellants.

The only way to lower the spacecraft weight would be to reduce the number of secondary

experiments included on board. Considering the value of these experiments this approach

is not recommended. Accepting a perigee altitude of 14,000 to 16,000 nautical miles instead

of 25,000 nautical miles would reduce the daylight period available for evaluating the sun

pointing experiments andwould mean that proton and electron measurements could not be

made across the entire VanAllen radiation belt. Since these factors represent the major

advantagesof the highly elliptical orbit this approach, althoughconsidered acceptable, it

is not very attractive. The recommendedapproachthen is to keep the spacecraft design

as proposed anduse the DSV-3E launch vehicle with the first stage floxed 30percent.

There are noperformance curves available in Section 2.4.3 (Volume II) for the DSV-3H

launch vehicle so its ability to place 404poundsin a 325 nautical mile, circular orbit with

a 33degree inclination, was discussed* with the Delta System Development Office of the

Douglas Aircraft Company. Douglas confirmed that the DSV-3H could place 404pounds,

andmore, in the desired orbit.

Fortunately, the actual spacecraft weight deviations from the 350poundsassumedin the

Mission Analysis phase of this study donot cause any major problems andthe original

analysis and conclusions are still valid.

13.6.2 SECONDARYEXPERIMENTS

It was possible to integrate all thirteen of the priority "A" and "B" secondary experiments,

defined in Section 5.4.2 of Volume II, into the spacecraft design. This fact adds signifi-

cantly to the valuable information that wouldbe obtained from the spacecraft and therefore

enhancesthe value of such a program.

*Phone conversation held on March 12, 1965.
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A study of Figure 13-3 indicates that there is still space on the sun-pointing experiment

panel for additional secondary experiments andthe equipment mountingpanels in the

spacecraft bodyare not completely filled. This fact suggests that if the launch vehicles

chosen can tolerate additional weight, as it appears they can in Missions A and C, the

possibility of including additional experiments should be studied.

13.6.3 SPACECRAFTTHERMAL CONTROL

A thermal analysis shouldbe conductedto determine if the spacecraft requires active

thermal control as assumedor if a completely passive system would be adequate. Such

an analysis would require consideration of the spacecraft thermal inputs and the component

heat dissipation as a function of time, which was beyond the scope of this study. The

active thermal control system proposed, becauseof its simplicity and the fact that the

approach hasbeenflight proven on Mariner C, is considered very reliable. As a result

the only major advantageto be derived if it could be eliminated would be a weight saving.

The active portion of the thermal control system weighs approximately 15 poundsbut if

it were eliminated someportion of this weight wouldundoubtedlybe required by the passive

system replacing it.

13.6.4 REDESIGNOF REFLECTIVE SURFACESEXPERIMENT

A redesign of the solar reflective surfaces experiment should be undertaken to see if it

could be made more compatible with this application. The design employed in this study

was developedfor a different application (seeSection 5.2.6 in Volume II) and only modified

for this case. The high concentrated weight (27pounds over an area 24 inches in diameter)

of this experiment makes it very difficult to locate in a position where it can be sun-pointing

andnot cause apoor center of pressure/center of gravity relationship anda large imbalance

in the momentsof inertia aboutthe control axes. Integrating this experiment into the

spacecraft designproved to be a major problem in developing a satisfactory spacecraft

configuration.
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13.6.5 SPACECRAFTBALANCE RESTRAINTS

The solid X-258 third stage motor of the IMPROVEDDELTA vehicle is spin stabilized

before ig_.ition. _h,is requires all third stage components (spacecraft included) to be

balanced before flight. The specified requirements as stated in "Delta Spacecraft Design

Restraints", Douglas Report SM-42367, are as follows: (1) To be statically balanced,

the spacecraft center of gravity shall not be displaced from its centerline by a distance

greater than 0.015 inches. The spacecraft centerline is defined as a line perpendicular to

the separation face of the spacecraft and passing through the center of the spacecraft

adapter fitting. (2) To be dynamically balanced, the spacecraft principal axes of inertia,

yaw, pitch, and roll, shall be perpendicular and parallel to the centerline within an angle

of 0. 002 radians.

Until the spacecraft is defined in greater detail a balance analysis aimed at verifying the

vehicles ability to meet these specifications is not warranted. However, it is important

that these requirements be recognized since they could place significant restraints on the

spacecraft design.
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